

Partners for Health Reformplus

Implementation of a Laboratory Network in Georgia

February 2005

Prepared by:

Antoine Pierson Consultant, Abt Associates Inc.

This document was produced by PHR*plus* with funding from the US Agency for International Development (USAID) under Project No. 936-5974.13, Contract No. HRN-C-00-00019-00 and is in the public domain. The ideas and opinions in this document are the authors' and do not necessarily reflect those of USAID or its employees. Interested parties may use the report in part or whole, providing they maintain the integrity of the report and do not misrepresent its findings or present the work as their own. This and other HFS, PHR, and PHR*plus* documents can be viewed and downloaded on the project website, www.PHRplus.org.

Abt Associates Inc. 4800 Montgomery Lane, Suite 600 ■ Bethesda, Maryland 20814 Tel: 301/913-0500 ■ Fax: 301/652-3916

In collaboration with:

Development Associates, Inc. ■ Emory University Rollins School of Public Health ■ Philoxenia International Travel, Inc. ■ Program for Appropriate Technology in Health ■ Social Sectors Development Strategies, Inc. ■ Training Resources Group ■ Tulane University School of Public Health and Tropical Medicine ■ University Research Co., LLC.

Order No WP 009

Mission

Partners for Health Reformplus is USAID's flagship project for health policy and health system strengthening in developing and transitional countries. The five-year project (2000-2005) builds on the predecessor Partnerships for Health Reform Project, continuing PHR's focus on health policy, financing, and organization, with new emphasis on community participation, infectious disease surveillance, and information systems that support the management and delivery of appropriate health services. PHRplus will focus on the following results:

- ▲ Implementation of appropriate health system reform.
- Generation of new financing for health care, as well as more effective use of existing funds.
- Design and implementation of health information systems for disease surveillance.
- ▲ Delivery of quality services by health workers.
- Availability and appropriate use of health commodities.

February 2005

Recommended Citation

Pierson, Antoine, February 2005. Implementation of a Laboratory Network in Georgia. Bethesda, MD: The Partners for Health Reformplus Project, Abt Associates Inc.

For additional copies of this report, contact the PHR*plus* Resource Center at PHR-InfoCenter@abtassoc.com or visit our website at www.PHRplus.org.

Contract/Project No.:	HRN-C-00-00019-00
Submitted to:	USAID/Tbilisi
and:	Karen Cavanaugh, CTO Health Systems Division Office of Health. Infectious Disease and Nutrition
	Center for Population, Health and Nutrition Bureau for Global Programs, Field Support and Research United States Agency for International Development

Abstract

A functioning public health laboratory service is a critical component of the infectious disease surveillance and the primary health care systems in Georgia, which have been undergoing a major reform since 2002.

This report is the first attempt to develop a realistic model for the network of bacteriological and serological laboratories in Georgia and provide recommendations on such key issues as the ideal number of such labs in the country, their categorization by level, minimum standards in terms of staffing, equipment, bio-safety and quality control, referral system, and functional links to other health care institutions. The document also provides an estimate of how much it would cost the government to run this model and suggestions for the financial sustainability plan.

It is expected that this report will speed up reaching the consensus between the country's principal stakeholders on the future direction for the development of laboratory service and provide guidance to a group of international donors that are assisting Georgia in this process.

Table of Contents

Acı	ronyn	ns	xi
Acl	know	ledgments	xiii
1.	Intr	oduction	1
	1.1	Objectives	1
	1.2	Background	2
		1.2.1 Findings of Rapid Assessment of Laboratories	2
		1.2.2 Lack of a Laboratory Network	4
	1.3	Current Preparedness for a Laboratory Network in Georgia	4
		1.3.1 MoLHSA Laboratory Authority	4
		1.3.2 Laboratory License Criteria	4
		1.3.3 Inspection of Laboratories	5
		1.3.4 Links with Health Insurance	6
		1.3.5 Analysis Nomenclature	6
		1.3.6 Biosafety Standards	7
		1.3.7 Sampling Requirements	7
		1.3.8 Signature Requirements	7
		1.3.9 Reagents and Supply Registration	8
		1.3.10 Equipment Procurement	8
		1.3.11 External Quality Control	8
	1.4	Current Organizational Issues	9
		1.4.1 Existing Types of Public (non-private) Laboratories	9
		1.4.2 Organization of the Laboratories at District Level	10
2.	Def	ining a Laboratory Network	13
	2.1	Improving Laboratory Confirmation: International Health Regulations	13
	2.2	Why Implement a Laboratory Network?	14
	2.3	What is a Laboratory Network?	15
		2.3.1 Mission of the National Laboratory Network:	15
	2.4	Key Institutions to Involve in Implementing a Laboratory Network	16
3.	Step	os in Developing a Laboratory Network	17
	3.1	Legal Framework for a Laboratory Network	17
		3.1.1 Agreement on Definitions:	17
		3.1.2 MoLHSA Laboratory Authority	18
		3.1.3 Laboratory License Criteria	18

	3.1.4 Inspection of Laboratories	19
	3.1.5 Links with Health Insurance	19
	3.1.6 Analysis Nomenclature	19
	3.1.7 Biosafety Standards	19
	3.1.8 Sampling Requirements	19
	3.1.9 Signature Requirements	20
	3.1.10 Reagent Standardization	20
	3.1.11 Organization of EQC	20
	3.1.12 National Quality Assurance Program	21
3.2	Organization of Laboratories: Level, Number	22
	3.2.1 Proposed Reorientation of District-level Laboratories	22
	3.2.2 Relations between Laboratories	23
3.3	Package of Analysis Done at Each Level	25
3.4	Methodology for Each Analysis by Level	
3.5	Equipment Needed at Each Level	
3.0 3.7	Quality Assurance	
3.8	Transportation and Communication between Laboratory Levels (Specimen and	
Info	prmation Flow)	
3.9	Costing of Future Activities	29
4. Ma	in Recommendations for Georgia	
Annex A	A. Other Programs and Partners Working on Laboratory Strengthening	
Annex E	B: Assessment of Gori Hospital Bacteriological Laboratory	43
Appendi	x C: Photographs of Laboratories Assessed in Gori	45
Annex D	D: Analysis by Level	47
Annex E	E. Equipment by Level of Laboratory	57
Annex F	: List of Procedures to be Developed for QA	61
Annex C	G. Details on Costing Issues	65
Annex H	I: Documentation Provided/Gathered during Consultation	69

List of Tables

Table 1: Summary of Gori Bacteriology Laboratory Assessment	3
Table 2: Laboratory-related Terms Requiring Clear Definition	18
Table 3: Number of Staff Needed, by Level of Laboratory	27
Table 4: Budget Categories for Transportation of Lab Samples	30
Table B-1: Details of the Gori Computerized Assessment	43
Table D-1. Provisory List of Analysis by Level Developed by the License Unit and NGO "Genesis	47
Table D-2. Detailed List of Analysis by Level to be Filled in.	50

Table E-1: List of Equipment to be Filled in, by Level	. 57
Table E-2. Illustrative List of Equipment by Level (used by VPDs surveillance program)	. 59

List of Figures

Figure 1. Laboratories at the District Level	10
Figure 2: Exchanges between Levels of a Laboratory Network	15
Figure 3: Proposed Modification of the Number of Labs at the District Level	22
Figure 4. Data Transport between Laboratory Levels	29
Figure 5: Budget for Each Level of Sample Transportation	30
Figure 6: Graphic Representation of the Budget for Transportation of Lab Samples	31
Figure A-1. Operational Flowchart of the DTRA Project	36
Figure A-1. Map Showing Organization of Specimen Collection for TB	38
Figure A-2. VPD Quality Assurance Manual	40
Figure G-1. Details on Sampling Equipment and Consummables Costing	65
Figure G-2. Training Costs	66
Figure G-3. Screenshot of the Preliminary Laboratory Network Costing Tool (WHO/CSR/Lyon)	68

Acronyms

otic Susceptibility Testing
an Type Culture Collection
Crimea Hemorrhagic Fever
International Foundation
unicable Disease Surveillance and Response
g Tool for Laboratories
al Quality Control
an Union
z Drug Administration
chaft fur Technische Zusammenarbeit
ted Disease Surveillance
l Quality Control
tory Assessment Tool
y of Labor, Health and Social Affairs
al Center for Disease Control
al Reference Laboratories
Coordination Unit
s for Health Reform <i>plus</i> Project
Assurance
Agent Detection & Response
orne Encephalitis
States
States Agency for International Development
e Preventable Disease
Health Organization

Acknowledgments

The author would like to thank Levan Baramidze at the Ministry of Labor, Health and Social Affairs; and Paata Imnadze, at the National Center for Disease Control in Tbilisi for their technical and information support during his consultancy visit; Tamara Sirbiladze at the USAID office in Tbilisi; Anton Luchitsky and Hirshini Patel of PHR*plus* for facilitating this mission; Mamuka Djibuti, Ivdity Chikovani, George Gotsadze, and Keti Goguadze of Curatio International Foundation for their support and contributions to this work and the final product; PHR*plus* ' Lynne Franco for the technical review of the report, and Linda Moll and Maria Claudia De Valdenebro for the support in editing and production; and numerous public health professionals from the Ministry of Health, NCDC, TB program, Infectious Diseases Research Center, WHO, World Bank, European Union, and US-funded dangerous pathogens program in Georgia who generously gave their time to, and shared insights into, the subjects relevant to this mission.

The production of this paper was funded by USAID under the prime contract No. HRN-C-00-00-00019-00 and subcontract No. 02-011-HPSS-7544.

1. Introduction

Georgia is currently implementing a number of reforms aimed at improving primary health care and integrated disease surveillance (IDS) and response, a component of which is laboratory strengthening. Eight major partners have projects with one or several components linked to laboratory strengthening:

- Threat Agent Detection and Response (TADR)/DTRA/highly dangerous pathogens
- Morld Bank primary health care development project
- European Union (EU) project on primary health care (PHC) in Kakheti region
- ▲ Tuberculosis program
- ▲ Disease surveillance/U.S. Agency for International Development (USAID)/Partners for Health Reform*plus* (PHR*plus*), Curatio International Foundation (CIF)
- Malaria network
- ▲ HIV/AIDS program
- World Health Organization (WHO)/Communicable Disease Surveillance and Response (CSR) strengthening program

Details about these programs can be found in Annex A.

This paper describes the findings and recommendations of the PHRplus project.

1.1 Objectives

PHR*plus* was asked by USAID/Georgia and the Ministry of Labor, Health and Social Affairs (MoLHSA) specifically to help develop a realistic model for the network of bacteriological and serological laboratories in Georgia. In doing so, it would provide recommendations on the following:

- ▲ The ideal number of such labs in the country
- ▲ Their categorization by level
- Minimum standards in terms of staffing, equipment, biosafety, and quality control
- A referral system and functional links to other health care institutions

It was also to provide an estimate of how much it would cost the government of Georgia to run this model and implications in terms of fixed and variable costs, as well as suggestions for the financial sustainability plan.

In meetings between MoLHSA and CIF staff, it was decided to extend the scope of the work to cover all laboratories activities in the country. This was due to:

- Differential diagnosis of VPDs, which need to enlarge the initial spectrum of diseases targeted
- The future World Bank project activities
- The Highly Dangerous Pathogens project and the new laboratories it is strengthening
- ▲ The future implementation of International Health Regulations (IHRs), with the National Center for Disease Control (NCDC) as the focal point
- Common needs of several programs (communicable and noncommunicable diseases) for sample transportation
- Common needs for laboratory staff training
- Common need for a national laboratory quality assurance (QA) manual

This paper is the product of the third consultation in this effort. The two earlier missions resulted in the following:

- In 2002, assessment of laboratories in Georgia with a focus on vaccine preventable diseases (VPDs)
- ▲ In 2003, a laboratory QA manual for VPD diagnosis

1.2 Background

1.2.1 Findings of Rapid Assessment of Laboratories

During the July 2002 mission to Georgia, laboratories in several parts of Georgia were assessed:

- Tbilisi (NCDC, Infectious Disease Hospital laboratories, Cito private laboratory)
- ▲ Batumi (public health laboratories, Infectious Disease Hospital)
- ▲ Kutaisi
- Rustavi (sanitary laboratory, Infectious Disease Hospital)

A paper questionnaire was developed in collaboration with WHO/CSR/Lyon and used for the purpose of these evaluations.

Since the time of the assessment, CSR/Lyon developed a computerized laboratory assessment tool (called LAT), which allows the user to automatically generate indicators when filling in the tool during assessment. Indicators are grouped into 10 modules representing 10 key laboratory activities.

In order to have a precise idea on how a Georgian intermediate laboratory would do in such an assessment, it was decided to use LAT when assessing the Gori Bacteriology Hospital. (Gori, one of the visited sites, is in central Georgia.) Five laboratories (see Annex C for photographs) were visited there:

- ▲ Hospital bacteriology laboratory (detailed assessment using WHO LAT)
- ▲ Hospital clinical laboratory
- Children's hospital clinical laboratory
- ▲ Tuberculosis (TB) center laboratory

▲ Sanitary inspection laboratory (former "*sanepi*" laboratory)

Gori assessment findings were applied to the LAT on 15/12/05. Results of the computerized assessment are summarized Table 1 and detailed in Annex B.

General indicator	37%
Average number of daily specimens	1
1-building facilities and utility service	61%
2-biosafety, hygiene and security	8%
3-specimen collection and recording	45%
4-equipment	48%
5-reagents and supply	47%
6-analysis and test performed	71%
7-laboratory staff & working time	53%
8-total quality	14%
9-reporting, analysis and communication	19%
10- outbreak participation	0%

Table 1: Summary of Gori Bacteriology Laboratory Assessment

(<50%: red, 50-85%: yellow, >85%: green)

Certain key findings apply to all laboratories visited:

- ▲ Laboratory workload is very light (average 1-2 sample/day in bacteriology), which does not allow laboratory staff to maintain their proficiency over time
- ▲ Laboratory staff is too numerous for the workload
- ▲ Laboratories are too numerous in the area
- ▲ Laboratories are not well equipped in terms of both quantity (only one microscope available in Gori bacteriology laboratory) and quality (monocular solar microscope instead of electrical binocular one, as example), and equipment is not well maintained
- ▲ Cold chain is not monitored
- Very limited level of quality assurance: no procedures, no internal quality control (IQC) (e.g., no reference strains), no external quality control (EQC)
- ▲ Very low level of biosafety
- ▲ Very little commitment from central level: no supervision, no recommendation, no continuous training, no promotion of QA, no provision of quality material, etc.
- ▲ No central reagent registration unit → each lab has the possibility to buy non-controlled reagents (such as expired antibiotic discs sold in Tbilisi; see photo in Annex C)
- Clinicians' distrust of laboratory results

- Clinicians with little knowledge of how to analyze and interpret laboratory results
- No communication between the laboratories visited in the same town

1.2.2 Lack of a Laboratory Network

Related to several assessment findings, laboratories in Georgia currently operate as single units, i.e., they are not linked into a laboratory network. This contributes to a number of laboratory shortcomings:

- Lack of coordination,
- ▲ Lack of standardization
- ▲ Low-quality analysis, low reproducibility
- Regular overlaps and duplication with other structures
- Dispersion of efforts and resources
- No centralization for:
 - \triangle Reagents and supplies
 - △ Quality assurance implementation
 - \triangle Waste management
- Limitation of the resources in general

These shortcomings waste resources and ultimately jeopardize the quality of health care.

1.3 Current Preparedness for a Laboratory Network in Georgia

1.3.1 MoLHSA Laboratory Authority

There currently is no structure in the MoLHSA specifically in charge of laboratories and laboratory science. This inhibits the development of a laboratory network. Nevertheless, an association of laboratory specialists has been created. This association is quite active and regularly collaborates with the licensing unit in order to ensure laboratory visits/inspections and various other expert missions. One of the leaders of this association is Dr Tina Bukia, professor of biochemistry at the State Medical Academy. She has visited four laboratories in two different periods (last time was summer 2004).

1.3.2 Laboratory License Criteria

Several licenses can be distributed to the laboratories, depending on the range of analyses they perform:

- ▲ Bacteriology
- ▲ Virology
- ▲ Immunology
- Clinical diagnosis (hematology)

- ▲ Biochemistry
- Serology
- Cytology (cellular level)
- Histopathology (tissue level)
- ▲ Toxicology
- Cytogenetical analysis

For each of these components, several criteria are currently being integrated into the licensing process:

- ▲ Building and space
- ▲ Staff
- ▲ Equipment
- Diseases
- ▲ Tests
- Tests volume

Dr Bukia found the criteria to be at a high level, but there are only criteria for each activity. There is no specific checklist designed to help an assessor and no specific requirements in the following very important fields:

- Biosafety (NCDC is working in this field and will issue standards soon)
- External quality control: participation in an EQC program is neither required nor compulsory (this refers to the act of participation and not to successful participation)
- Procedures/quality assurance: no basic QA policy and procedures are required, no analytical procedures are required prior to licensing

In addition, once awarded, the license duration is permanent, i.e., a licensed laboratory does not have to renew its license. Laboratories licensed under less-restrictive earlier criteria do not have to submit to a new visit; they can continue with their old license forever. Such a situation will not motivate laboratories to respect or maintain standards once licensed, and should be changed.

The licensing process requires an onsite visit, during which adherence of the lab to the existing standards is checked. However, as these visits are done without a standardized checklist, the quality of a visit depends on the expert appointed to do the visit. This approach precludes an independent scoring system for each lab; nor can improvement of laboratory quality be monitored over time.

1.3.3 Inspection of Laboratories

Prior to any inspection, government (court) authorization is required, and an official permit has to be shown to the inspected laboratory. Inspections are not viewed as a means to improve the overall quality of laboratory activity, but much more as a punitive, "police" action, leading only to fines and restrictions. Nor are inspections done on a regular basis, preventing improvement from becoming a regular activity. Again, the lack of a standardized ways of applying the criteria (i.e., checklist) is a problem for inspectors, and also for the targeted laboratory (no guidance before inspection).

No EQC activity is performed in addition to inspections. Thus, control is "static" (only conditions are checked), whereas EQC is "dynamic" (laboratory performance is checked).

1.3.4 Links with Health Insurance

Currently, there are no specific links between laboratories, license departments, and health insurance, and there are no official price lists for laboratory analyses applicable in all public structures of the country. Each laboratory sets its own prices. This means that prices can vary greatly.

Some federal (public) programs (TB, cancer, etc.) are free of charge to the patient; laboratories are reimbursed by the related vertical programs. Reimbursements to laboratories performing these tests are very low, even below the reagents' cost associated with the analysis. In contrast, prices at private laboratories for similar analyses are usually 10–100 times higher than the reimbursements by the vertical programs.

This system has additional limits: when a patient is suspected of developing TB, he goes to the TB center, which performs lung radiography and bacilloscopy. The patient must pay for both (radiography is around 15 laris) and is reimbursed only if one of these tests is positive. This practice limits the effectiveness of these programs; to encourage people to seek a diagnosis, laboratory investigation for such diseases should be free of charge.¹

Laboratory links with health insurance and federal public health programs should be strengthened.

1.3.5 Analysis Nomenclature

A list of analyses that should be performed at each laboratory level has been developed. Table D-1 (in Annex D) summarizes the contents of a book issued by the Georgian license unit and the NGO "Genesis" in 2004. This table shows, for each of three levels, which analysis should be performed and which techniques linked to these analyses should be available (sampling, staining, observing, etc.). Any time you advance a level, all the analyses of the lower level should also being performed (not shown in the table in order to avoid useless repetition). The summary of the current standards is a very good beginning.

- ▲ Strengths of the list:
 - \triangle Its existence: few countries have such lists
 - △ It tries to address several level of laboratories, grouped around four levels
 - △ It groups analyses by discipline and technical aspects that are required for some laboratory levels
- ▲ Weaknesses of the list:
 - \triangle Not all analyses are covered

¹ It should be noted that some analyses are free of charge at the NCDC and the Tbilisi Infectious Disease Center laboratory, for example, investigation of meningitis.

- △ There is little precision about the analytical method that should be used and little difference between screening and confirmation
- \triangle Important analyses not available in the country are not planned (where to send, how to send, what to expect back)
- △ Too many types of laboratories should be performing the same type of analysis. The number of laboratory types should be reduced in order to simplify
- \triangle There is no cost or cost range linked to each analysis.
- △ It is still not officially validated by the Georgian MoLHSA

Note about analysis prices:

Prices are determined by the market in Georgia, but a standard price can be established for all the public facilities. This price could also be an indication for patients and private laboratories.

It is recommended that the price be expressed using a coefficient (C), for example, glucose measurement would cost 5C, HIV serology 20C, etc. If 1C = 20 tetri (fictitious number), this mean glucose analysis would cost 1 lari and HIV serology 4 laris.

This coefficient can be revised on an annual basis, without having to republish the entire list of prices. In addition, this coefficient can be a good and simple way to monitor the activity of a laboratory, when summing up all analyses expressed by a coefficient.

1.3.6 Biosafety Standards

Today, there are no clear biosafety standards in Georgia. NCDC is developing a list of standards, but it is not close to being released. Once the standards are established, the question will remain of who will check their application in each laboratory.

1.3.7 Sampling Requirements

Currently, no specific certification is required for persons who take samples for lab tests. Such certification would facilitate the national standardization of specimen sampling, standardization of sample identification, and standardization of sample container and eventual transport media associated with samples. Nor are there clear instructions for sample takers regarding remedial action they should take if a problem arises.

1.3.8 Signature Requirements

No laboratory can be opened in the country without a medical doctor on the staff. The doctor usually signs off on the analysis result form. In small facilities with only a single doctor, signature responsibility transfers to the lab technician when the doctor is absent (for meetings, vacation, illnesses, etc.). Procedures related to this transfer of signature should be clarified, as should the other responsibilities linked to this transfer of authority:

- Respect of the procedures
- Preventive maintenance of equipment

- ▲ Security issues
- Results validation
- Results transmission

1.3.9 Reagents and Supply Registration

No specific agency for registration of reagents exists. This allows the commercialization of low quality reagents with:

- ▲ Low sensitivity
- ▲ Low quality control before release
- Expired reagents

In addition to the lack of reagent registration standards, no central supply unit is available for laboratory items. Custom duties for laboratory supplies have not been established. (Many countries charge low duties for drugs, laboratory, and radiology supplies).

1.3.10 Equipment Procurement

The equipment unit has been completely restructured in the past years and a large staff turnover has taken place. New norms are currently being redefined, but those responsible for the unit lack guidance in establishing these norms.

In addition to redefining norms for each type of equipment, the staff have to work on maintenance issues critical for ensuring equipment lifespan (availability of persons who specialize in the operation and maintenance of the equipment, access to [importation of] spare parts, preventive maintenance procedures, basic training of end users, etc.)

A list of manufacturers, approved on the basis of their quality system process, should be issued. Only these manufacturers should be considered for public tenders. In addition to ensuring procurement of good-quality equipment, this will simplify maintenance issues by decreasing the range of models of the same equipment (different microscopes, centrifuges, photometers, etc.) that are used.

1.3.11 External Quality Control

Georgia currently has no specific organization in charge of EQC/EQA programs. Some surveys are carried out by the national "laboratory bureau." Two organizations that have some experience in organizing schemes are:

- ▲ Genetic Ecological Centre, which organized several surveys in biochemistry
- NCDC, which has just launched a program in bacteriology (in collaboration with WHO/CSR/Lyon unit)

1.4 Current Organizational Issues

1.4.1 Existing Types of Public (non-private) Laboratories

The definition of "public" laboratory is imprecise; these laboratories in Georgia may best be identified as those laboratories that are not purely "private." A distinction is made between public "bacteriology" laboratories (direct microscopy, culture, and AST) and "clinical" ones (hematology, biochemistry, and sometimes blood grouping). Different levels of public laboratories in the country are:

Primary health care laboratories

- △ Polyclinics: not all have a laboratory component
- △ Ambulatories: very few have a laboratory component

Where PHC laboratories exist, most are "clinical," with basic biochemistry and hematology tests.

District laboratories

- △ Public health laboratories (originally "sanepi" laboratories), with two types:
- △ Inside public health centers, including parasitology/malaria diagnosis laboratories
- △ Sanitary laboratory, performing mostly food and water analysis (bacteriology and physicochemical components), but also some stool analysis
 - △ Blood bank laboratories: almost all 66 districts have blood banking services, and they are usually also in charge of serology
- △ Sexually transmitted disease (STD) laboratories, linked to STD consultation center, exist in most of the districts (not in districts close to large urban areas)

Laboratories linked to women's consultation centers

Hospital laboratories

- △ District hospital (bacteriology/clinical)
- △ Children's hospital (bacteriology/clinical), sometimes divided between in- and outpatients
- \triangle City hospital (bacteriology/clinical), in the big towns

Regional laboratories

- △ Laboratories heading one of the 12 regions of the country
- △ Not really developed except in Batumi, where NCDC has a branch lab
- △ Sometimes a larger district laboratory considered as regional as in Kutaisi
- △ Kutaisi, Poti, and Batumi have regional hospitals, also equipped with laboratories

Reference laboratories

- \triangle NCDC
 - △ Diphtheria
 - △ Polio

- △ Malaria
- △ Tuberculosis laboratory
- △ AIDS laboratory
- △ Oncology/hematology (oncology center)
- \triangle Other?
- Other laboratories:
 - △ Railroad health care system
 - △ Army (Ministry of Defense)
 - △ Ministry of Internal Affairs, Ministry of Defense

Note about reference laboratories:

Usually a laboratory is a reference for a limited number of diseases/disease families. However, it appears that there are not reference laboratories for all types of disease. In addition, the reference status is not always clearly formalized (through decree or official publication).

1.4.2 Organization of the Laboratories at District Level

Figure 1. Laboratories at the District Level

Note: "B" and "C" refer to "Bacteriology" and "Clinical" laboratories

Judging from the Gori laboratory assessment and the list in the preceding section, there are surplus laboratories. This leads to insufficient laboratory support in term of:

- ▲ Staff
- ▲ Equipment
- ▲ Reagents and supply
- ▲ Training
- Building conditions

In addition, the current system is not cost-effective. The many smaller laboratories – as opposed to a large network – prevents laboratories from buying large, expensive equipment (chemistry auto-analyzer, automated cell counting, haemostasis analyzer, ELISA systems, blood culture analyzer, and automated antibiotic susceptibility testing, etc.)

2. Defining a Laboratory Network

The previous section discussed the shortcomings of a health system when it lacks a laboratory network. This chapter defines a laboratory network, and how to go about designing and implementing such a network.

2.1 Improving Laboratory Confirmation: International Health Regulations

The purpose of the International Health Regulations is to ensure maximum security against the international spread of diseases with minimum interference in world traffic. IHR origins date back to the mid-19th century when repeated cholera epidemics overran Europe (1830–47).

In 1951, WHO member states adopted the International Sanitary Regulations, which were renamed the International Health Regulations in 1969. IHR regulations were modified in 1973 and 1981. The regulations were originally intended to help monitor and control six serious infectious diseases: cholera, plague, yellow fever, smallpox, relapsing fever, and typhus. Today, only cholera, plague, and yellow fever are notifiable diseases.

The world is changing and very few urgent public health risks stay solely within national boundaries. Coupled with increases in global traffic and trade, new microbes have appeared and old diseases have reemerged. The World Health Assembly has responded to these changes:

- ▲ In the early 1990s the return of old epidemics such as cholera in South America and the emergence of new infectious agents such as Ebola hemorrhagic fever resulted in a resolution calling for the revision at the 1995 World Health Assembly.
- ▲ The recent outbreak of SARS (Severe Acute Respiratory Syndrome), the growing threats linked to avian influenza, and the many human and economic consequences linked to these outbreak accelerated the process.
- ▲ In 2001, the World Health Assembly adopted a resolution on global health security: epidemic alert and response in which WHO was to support its member states in **identifying**, **verifying** and responding to public health emergencies of international concern.
- ▲ In January 2004, the WHO Executive Board decided to convene the Intergovernmental Working Group on the Revision of the IHR in November 2004.

What will change in the new IHR?

New IHR regulations linked to surveillance/laboratory network are bolded:

- 1. Updating existing measures of the current IHR
 - \triangle Guide on Ship Sanitation
 - △ Guide on Hygiene and Sanitation in Aviation
 - △ Guide to **Early Warning** Systems in **Disease Surveillance**.

- 2. Proposed key changes and benefits to Member States
 - △ Real time event management system (including **disease diagnosis**)
 - △ National core surveillance capacities: IHR requirements of **detecting**, **reporting** and responding to public health emergencies of international concern.
 - \triangle Notification for public health emergencies of international concern

In conclusion:

All member states need to improve their surveillance system, including the laboratory confirmation component, which is crucial for early identification and characterization of any causative agent, making further rapid notification possible. A deadline of May 2010 has been proposed for implementation of the new regulations: all member states should be able to rely on a functional and quality controlled surveillance network at this stage.

Implementation of IHR (compulsory) can be the ideal moment to reform, review, and reorganize the global laboratory system in Georgia, including IHR-specific diseases (mostly epidemic-prone diseases) but also all other diseases or programs needing laboratory confirmation or information.

2.2 Why Implement a Laboratory Network?

Implementing a laboratory network will allow Georgia to resolve the problems discussed earlier and improve laboratories' **quality/cost/efficiency** ratio:

- ▲ Quality:
 - △ Centralized supply of quality controlled reagents
 - \triangle National quality assurance program
 - △ Staff receive refresher on critical issues
 - △ National data management system
- ▲ Cost:
 - △ Reorganization of the laboratories → optimization of all working conditions, workload and analytical processes → economy
 - \triangle Centralized supply of reagents \rightarrow economy of scale
 - \triangle Preventive maintenance policy \rightarrow increased equipment lifespan
- ▲ Efficiency:
 - △ Sample transportation instead of patient transportation (if any)
 - △ Improved data management
 - △ Improved links between laboratories and disease surveillance systems
 - △ Improvement of the prescription/interpretation of medical analysis

2.3 What is a Laboratory Network?

Usually, three levels of laboratories are recommended in a country:

- 1. 'Central' level: reference laboratories
- 2. 'Intermediate' level: regional laboratories
- 3. 'Peripheral' level: district laboratories

A fourth level can also be defined at PHC level, when some laboratory activities are performed (usually limited to very basic screening tests, in addition to specimen shipment associated).

Different types of exchange among the levels can be observed, as shown in Figure 2.

2.3.1 Mission of the National Laboratory Network:

Providing quality and timely services, at the right place, responding to the needs of:

- ▲ The patient
- ▲ The community
- ▲ The health care system staff:
 - △ Clinicians
 - △ Epidemiologists
 - \triangle Sanitary engineers
- Decision makers and politicians

2.4 Key Institutions to Involve in Implementing a Laboratory Network

Several institutions are should be involved:

- ▲ Ministry of Health
 - \triangle License, norms and standards unit
 - △ Reference laboratories (NCDC, TB reference lab, other reference labs)
 - ${\scriptstyle \bigtriangleup} \quad Equipment \ unit$
 - \triangle Quality control inspection unit
- ▲ Other ministries:
 - △ Ministry of Agriculture
 - \triangle Ministry of Defense
 - \triangle Ministry of Foreign Affairs

They may be assisted by the partners listed in the introduction to this report.

3. Steps in Developing a Laboratory Network

There are 10 basic steps to developing a laboratory network:

- 1. Normative step (laws, decrees, standards) \rightarrow global frame of the lab work
- 2. Organization of the labs (number/levels...)
- 3. Package of analysis by level
- 4. Methodology for each analysis (level-dependent)
- 5. Equipment needed to perform the analysis following the methodology chosen
- 6. Staff needed to perform the analysis using the methodology
- 7. Quality assurance (procedures, maintenance, training of the staff, etc.)
- 8. Relations between laboratories (specimen flow/data flow)
- 9. Costing of all activities
- 10. Practical implementation of the network, how to organize activities

The following sections describe each step.

3.1 Legal Framework for a Laboratory Network

This section addresses the overall framework that should be implemented prior to the laboratory network. It will also address some key issues that should be solved to ensure the sustainability of the future network. The following sections describe these normative steps.

3.1.1 Agreement on Definitions:

Precisely defining terms relevant to laboratory work is prerequisite to a laboratory network. The definitions should exist in written form – in the present case, in the Georgian language – and be available in all laboratories. This will allow all laboratory specialists to understand each term in the same way, and thus carry out their work in a like manner. For example, there currently is confusion about terms such as 'licensing,' 'certification,' and 'accreditation':

- A **license** is authorization from a licensing unit that allows a laboratory to be opened, as long as it respects/follows national norms
- ▲ Once open, the laboratory must seek **certification** in specific areas of activity (viral serology, mycobacteriology, haemostasis, etc.) or for all types of activities. International laboratory specific standards have to be respected (for example, ISO 17025)

▲ If the laboratory is part of a bigger structure (for example, a hospital), this structure can seek **accreditation**. A global norm (from the ISO 900X type of norms) will be followed and the entire institution will be accredited. These norms are not laboratory-specific, but cover any type of service-providing activities.

Table 2 contains an initial (non-limiting) list of terms requiring clear definition:

Accreditation	Licensing
Analysis	Procedure
Analysis report	Qualification
Analytical system	Quality
Assessment/evaluation	Quality assurance
Certification	Reference values
Confidentiality	Request form
External quality control	Sample/specimen
Internal quality control	Sampling
Laboratory	Transferability/reproducibility
Laboratory staff (all categories)	Validation

Table 2: Laboratory-related Terms Requiring Clear Definition

3.1.2 MoLHSA Laboratory Authority

Also needed is a unit at the level of the MoLHSA that coordinates laboratories and laboratory science. It may be called a "laboratory office" or "laboratory coordination team," or "laboratory bureau." Depending on the country, this unit may exist:

- As a laboratory-only unit
- ▲ Joined with drugs/pharmacy
- ▲ Joined with radiology

Terms of reference of such a laboratory coordination unit must be precisely defined as do the unit's relations with the licensing unit, the NCDC, other reference laboratories, and all the other entities linked to laboratories and laboratory science (including education).

3.1.3 Laboratory License Criteria

There must be clear and sufficient licensing criteria and standardized tools to measure whether labs meet the criteria. These criteria should include:

- ▲ Building and space
- ▲ Staff
- ▲ Equipment
- Diseases
- Tests
- Tests volume
- Biosafety (NCDC is working in this field and will issue standards soon)
- Participation in EQC

▲ Existence of QA procedures

A license should be granted only after physical inspection of the laboratory and should require periodic renewal; three years is a reasonable period for license validity.

3.1.4 Inspection of Laboratories

Inspections should be viewed as a means to improve the overall quality of laboratory activity. They should be done on a regular basis, so that improvements can be noted. Inspectors should have standardized criteria (checklist) and also can be used by laboratories as guidance prior to inspection. Inspections should include EQC, which allows for a very "dynamic" assessment of real laboratory performance.

3.1.5 Links with Health Insurance

Linking health insurance reimbursement to laboratory licensing and ensuring that coverage with federal programs is coordinated in terms of incentives to patients and real costs of laboratory analysis.

3.1.6 Analysis Nomenclature

The current range of laboratory types should be simplified and standardized, with responsibility for specific analyses assigned to specific laboratory levels. More details about analysis by level can be found in section 3.2 and Annex D.

3.1.7 Biosafety Standards

The laboratory network needs to have biosafety standards in place, and an operative mechanism to verify that standards are being followed. These standards should include:

- ▲ Vaccination policy for laboratory staff (already existing)
- Sterilization standards
- Disinfection and disinfectant standards
- ▲ Laboratory safe work standards
- ▲ Dangerous goods transportation (national) standards
- Waste disposal standards

3.1.8 Sampling Requirements

Good sampling (and a good sampling strategy) is the basis of a good analysis. When sampling is correctly performed, 30 percent of the analysis is done. In contrast, not even the best laboratory is able to get a good result with a bad sample. The development of a basic certificate for those taking samples would allow this standardization. It should also include a clear scope of responsibility.

3.1.9 Signature Requirements

All analysis results forms need a signature. When the medical doctor is not available to sign, procedures for clear transfer of authority are needed. These include:

- Respect of the procedures
- Equipment preventive maintenance
- Security issues
- Results validation
- Results transmission
- Reagents and supply registration

3.1.10 Reagent Standardization

Analysis standardization in a laboratory network also requires reagent standardization. A central supply unit facilitates:

- ▲ General decrease of all supply costs
- Control of the quality and registration of kits
- Easy standardization among laboratories
- Decrease of shortages at the peripheral level
- Equipment characteristic determination

Norms for each type of equipment must be in place, considering the maintenance issues (availability of specialist in the country, spare parts importation, preventive maintenance schemes, basic training of end-user, etc.). Having an approved list of manufacturers eligible for public tenders, based on their quality system process, will improve the quality of equipment and simplify maintenance issues in decreasing the number of different models of the same equipment (different microscopes, centrifuges, photometers, etc.).

3.1.11 Organization of EQC

Objectives of EQC schemes:

Laboratory-oriented objectives:

- Identifies possible deficiencies in laboratory practice and guides participants in corrective actions
- ▲ Identifies the reliability characteristics of particular methods, materials, and equipment under routine conditions and suggests corrective actions
- Assesses and monitors the impact of training; helps preparation of future training

Public health-oriented objectives:

 Provides the basis for the comparability of results during epidemiological surveillance and disease control

- Collects information on laboratory measurements (intra- and inter-laboratory) to alert professionals and/or government bodies about problems related to traceability and harmonization of results, and establishes limits of acceptability of results as appropriate for a given purpose;
- Collects information for the purpose of licensing or accrediting of laboratories;
- ▲ A specific unit for EQC should be created. Usually, EQC organizers are linked to reference laboratories, but these laboratories should already be participating in one or several EQC programs before becoming the organizer. It shoud be clearly stated policy that all laboratories must participate in the national EQC program. Initially, only participation is compulsory these programs should not be punitive. Before the EQC program becomes stricter, support can be provided allowing for real improvement.

EQC programs should be established for different types of laboratory activities, similar to the licensure model. For example, a laboratory owning five licenses (biochemistry, immunology, etc.) will have to participate in five EQC programs.

Ideally three, but minimally two surveys per year per program must be organized. Once again, participation should be compulsory.

Generally, EQC programs are free to public laboratories, but not to private ones.

Important note: A network needs regular activities and should be of clear benefit to its members. Therefore, in addition to their impact on quality, EQC programs can be a good way to begin a laboratory network. Such programs initiate communication, are performed on a regular basis and are followed by corrective actions.

3.1.12 National Quality Assurance Program

Surrounding the EQC program, a national QA program has to be promoted. It should be in charge of:

- Developing a national QA manual
- Providing reference material
- Assessing laboratories
- Organizing external quality control
- Promoting internal quality control
- Training on coordination and evaluation²

² In collaboration with the medical university and appropriate ministry offices.

3.2 Organization of Laboratories: Level, Number

3.2.1 Proposed Reorientation of District-level Laboratories

The ultimate goal is to have *one strong polyvalent laboratory* in each district. As shown to the right in Figure 2, this laboratory would be structured in different units:

- ▲ Clinical analysis (biochemistry, hematology, haemostasis)
- Human bacteriology analysis
- Sexually transmitted diseases analysis (except HIV and hepatitis issues)
- A Parasitology analysis (including stool parasites and malaria)
- Food and water analysis (microbiology as well as physicochemical analysis)
- Analysis linked to maternal–child care

A night shift service has to be implemented inside the "clinical" unit of the laboratory, in order to get at least one laboratory per district able to function on a 24-hour basis, seven days a week (24/7).

Figure 3: Proposed Modification of the Number of Labs at the District Level

In addition to the large central laboratory, two other laboratories should exist at the district level:

- ▲ Safe blood/HIV laboratory: in charge of *all* serologies for the district (linked to blood banking issues as well as for other purpose such as measles). This separation of serological issues will allow better equipment for the blood bank unit
- Tuberculosis laboratory: depending on the district, either a sputum collection site or a real
TB diagnosis laboratory should be available. Due to the specificity and the biohazardous character of TB diagnosis centers, due to the existing links and programs with different partners (as shown in Annex A) and the existing network, it seems relevant to keep this separation.

3.2.2 Relations between Laboratories

Appropriate relations between laboratories were illustrated in Figure 1. Again, three levels will be considered:

- District:
 - △ Central district laboratory
 - △ Safe blood/HIV laboratory
 - △ Tuberculosis laboratory (if available)³
 - △ Other small laboratories from PHC/clinics located at the periphery of the district
- ▲ Regional⁴
 - △ Central regional laboratory (larger district lab)
 - △ Safe blood/HIV laboratory (if available)
- National
 - △ Sample dispatching unit
 - \triangle Reference laboratories

As shown in Figure 3, the future central district laboratory will be the heart of the district level organization:

At the district level:

- Reception of the samples from:
 - \triangle Other hospitals \rightarrow analysis (eventually referred to higher level if exceeds possibilities)

 - △ Safe blood and HIV laboratory \rightarrow referred to higher level for safe blood/HIV (regional or national)
 - \triangle Tuberculosis laboratory \rightarrow referred to higher level for tuberculosis (national only)
- ▲ Reception of results and data from regional/national level \rightarrow transmission of the results:
 - \triangle Inside the hospital
 - \triangle To other hospitals
 - \triangle To safe blood/HIV laboratory

³ Sputum collection centers are not considered, as a part of the regular TB network

⁴ A regional level for TB diagnosis has not been planned in Georgia; diagnostic activities currently are split between district and reference levels, and the sputum collection level is the peripheral level

- \triangle To TB laboratory
- \triangle To PHC/clinics

Even for TB and safe blood/HIV laboratories, the communication regarding samples between the district and regional/national levels will be done through the large district laboratory in order to simplify transportation relays.

At regional level:

Note: This model implies that regional laboratories are functional and are able to perform a larger analysis package than at the district level. The regional polyvalent laboratory also plays the role of district lab (no duplication inside the same town)

The regional polyvalent laboratory:

- ▲ Receives samples from lower level laboratories (district laboratories and public health laboratories from their area) → analysis (eventually referred to higher level if exceeds possibilities)
- ▲ Receives results/data from national level → transmission to regional laboratories and district level
- ▲ Receives results from national TB and safe blood/HIV national laboratories → transmission to regional safe blood/HIV laboratory (if any) and to district level TB and safe blood/HIV laboratories
- Re-send empty boxes, ice bags, and ice packs to the correct district laboratory

At national level:

Note: This model implies that a clear reference level has been established.

A dispatching unit should be created in Tbilisi, in charge of receiving all samples from the periphery. This unit could be ideally located inside one of the reference centers (NCDC, infectious disease hospital, TB reference laboratory, etc.). This unit performs the following activities:

- Receives all the samples from periphery
- A Receives all the results from reference laboratories
- Receives documents and data from different authorities (laboratory bureau, surveillance unit, reference laboratories, etc.)
- Coordinates cold chain and transportation supplies for all network
- Sends samples to correct reference laboratory (depending on the specificities)
- Sends results/data to correct regional laboratory
- Re-sends empty boxes, ice bags, and ice packs to the correct regional laboratory
- ▲ Maintains a global database for disease referring and disease confirmation → excellent tool for epidemiologists and disease surveillance

3.3 Package of Analysis Done at Each Level

The determination of the list of analyses to be performed at each of the laboratory levels is one of the activities that will condition the future network of the laboratory. Initial work has already taken place in Georgia, but it needs to be taken farther. Table D-2 in Annex D, which contains 19 parts, lists a large variety of analyses that could be available.⁵ The table should be filled-in by a working group or by the newly created laboratory bureau.

Note: the Vaccine Preventable Diseases surveillance project (implemented by Curatio International Foundation) developed a QA manual (see Annex A) where the analysis linked to VPDs has been linked to laboratory levels.

3.4 Methodology for Each Analysis by Level

For each analysis by level (Table D-2 in Annex D), there is one simple question: "How should each analysis be performed? (Which methodology should be used?)"

Selecting the analysis method will require finding a balance between the cost and the quality of the result. One needs to keep in mind to look for *adequate* technology and not necessarily the most advanced technology. The methodology can be different depending on the laboratory level, in particular:

- Screening-oriented at district level
- ▲ First row confirmation at intermediate level
- ▲ Definitive confirmation/full characterization at reference level

Example with Hepatitis B diagnosis:

- ▲ Ag HbS screening test → rapid test, no specific equipment required (QA requirements are existing but are limited)
- ▲ Ag HbS confirmation → ELISA machine (with good QA level), reagents management (including cold chain)
- ▲ Other antigens or antibodies (biological follow-up of the disease) → ELISA machine (ideally two) with full QA policy, large reagents management, specialists for interpretation, involvement in the national EQA system, etc.

Example with blood sugar determination:

- ▲ Glucose estimation with dipsticks → rapid test, no specific equipment required. QA requirements exist but are limited.
- ▲ Glucose home determination with glucometer (auto-control for diabetic people) → improved rapid test, need for equipment. QA requirements are more extensive, yearly maintenance/checking visit remain an issue
- ▲ Glucose routine determination with colorimeter (hospital routine method). Usually glucose oxydase method is used (GOP/POD) with a colorimeter. Reagent management is simple. QA

⁵ Due to their specificity, neither histopathology analysis nor analysis linked to reproduction and medically assisted procreation have been included in this table.

requirements are high, regular maintenance, IQC and EQC participation are required.

▲ Glucose specific determination with precise 37° spectrophotometer using Hexokinase method (no other "oses" than glucose will interfere), usually for slight hyperglycemia confirmation, glucose one-day follow-up (six samples/24 hours). This method requires very strict QA level, very well-maintained equipment, good reagent management (three times more expensive than glucose oxydase).

These brief examples show the importance of the methodology and its many consequences.

3.5 Equipment Needed at Each Level

Once analyses by level are defined (including methodology that should be used depending on the level), a list containing all types of laboratory equipment should be developed. This has to be done for each laboratory level. This list should enable laboratories to perform the set of analyses planned, using the methodology planned.

In Table E-1 (Annex E) provides an equipment list and it should be filled in. It is recommended to fill each of the four levels of laboratory (PHC, district, regional, central). Also in Table E-2 (Annex E) shows the same type of list developed for the specific purpose of VPDs in 2003 following a workshop gathering several key persons from the country (MoH, NCDC, WHO, etc.). but only including three levels of laboratories (without PHC level). This list covers only VPDs needs (no biochemistry or hematology activities are included), but provides an example.

3.6 Staff Needed at Each Level

Once analysis, methodology, and equipment have been defined, it is possible to estimate the number of staff needed for the networked laboratories, in order to run the system to ensure efficient operation of the IDS system.

A rapid survey should be performed in order to estimate:

- ▲ The existing workload in the various laboratories
- ▲ If the workload is light, the main reasons:
 - △ Quality of analysis performed?
 - \triangle Range of analysis proposed?
 - △ Quality of prescription and interpretation?
 - △ Geographical factors (access, weather, etc.)
 - △ Financial factors?
 - \triangle Other factors?
- A How would this workload be affected if a large central district laboratory were created?

Once the workload is roughly estimated, it is possible to determine the number of staff needed. All staff categories have to be considered. If the laboratory has night shifts, they must be included in the estimate.

Once established, and if able to estimate the cost⁶ of each staff category, it will be possible to know how much the staff component of the network costs.

	РНС		District		Intermediate			
	RANGE		RANGE		RAN	IGE		
Director								
Senior specialist								
Technician								
Janitor/cleaner/driver/guard								
Technician assistant								
Secretary, administrator								
Logistician/stock manager								
Electrician/equipment maintenance								
total								

Table 3: Number of Staff Needed, by Level of Laboratory

3.7 Quality Assurance

As noted several times in this report, QA should be one of the factors contributing to this future network. The QA concept can be broadened to include all laboratory activities in a concept called "**Total Quality**".⁷ Total quality includes:

- ▲ Laboratory assessment
- Equipment issues (registration, inventory, preventive maintenance, curative maintenance, etc.)
- ▲ Cold chain issue (control, monitoring, etc.)
- ▲ Staff management
- Premises management
- A QA manual/standard operating procedures
- ▲ Internal quality control
- External quality control
- Norms, certification and accreditation

In addition, several other activities should be developed:

- Reagents and supply registration
- Preparation of training needs for staff

⁶ Including taxes, benefits, bonuses, pension, training, EQA, housing, health insurance, etc.

⁷ WHO/CSR/Lyon developed a one-week training module on "total quality," already available in French, and available in English in May 2005 (first English-language training session in June 2005 in Bordeaux, France)

A critical and urgent activity is the development of a national QA manual that should be used in all the Georgian laboratories. The VPD manual (see Annex A) could be completed to cover all laboratory activities:

- ▲ Creation of a QA committee
- Definition of the list of procedures needed
- Creation of several working groups to write these procedures
- Validation of these procedures
- Distribution list

Annex F contains a preliminary list of procedures, covering only the needs of communicable diseases. It can be used as a starting point from which to develop the list of procedures needed. For networking purpose, special attention should be given to all the procedures concerning liaison between laboratories (transportation, results. etc.)

3.8 Transportation and Communication between Laboratory Levels (Specimen and Information Flow)

Schematically, four levels of laboratories can be defined in Georgia:

- ▲ PHC
- ▲ District/rayon (66)
- $\blacksquare \quad \text{Region} (11 + \text{Tbilisi})$
- ▲ Reference (not yet identified)

All transportation and communication links between these laboratories have to be planned. For the present, PHR*plus* decided to use an average of eight PHC laboratories per district, 61 districts (five urban districts are not in the global system, as they will only have inter-urban relations), and 11 regions. (See section 3.2 for more details about relations between levels.) Figure 4 depicts the links between laboratory levels.

Primary health care level → Rayon level:

Once a week, samples will be transported by local buses from PHC to the rayon level. Results will be brought back the following week by the same transporter.

Rayon level \rightarrow Regional level:

Twice a week, samples will be transported by local buses from the rayon to the regional level. Results will be brought back with the following transport.

Regional level \rightarrow Reference level:

Three times a week, samples will be transported by local buses from the regional to the reference level (sample dispatching unit). Results will be brought back with the following transport.

Figure 4. Data Transport between Laboratory Levels

Needs for this sample/results system:

- Transportation boxes, strong triple package are recommended in order to follow the international legislation and enable re-use of boxes for four years (normal lifespan of these items)
- ▲ Cold chain supplies: cold boxes, cold pack
- Brief guideline for sampling/sample preparation/sample transportation
- Training of staff, every two years this number of staff should be trained in sampling:
 - \triangle Three people per regional labs (3X11 = 33 people)
 - \triangle Two people from rayonal/district lab (2X61 = 122 people)
 - \triangle One person from PHC (488X1 = 488 people)

This training should be done as "training of trainers" in order for them to be able to re-train colleagues when back in their laboratories

At district level, results and specimens are centralized by the district laboratory before dispatching to the adequate recipient laboratory.

3.9 Costing of Future Activities

Note: All tables and graphs (included in this report as pictures) are also available in MS Excel® format.

Intra-district		Districts to reg	ions	Region to Tbilisi					
Large PHC structures									
number of PHC structures	8	number of districts	61	number of regions	10				
Number districts	61	transports per week	2	transports per week					
transports per week	1	# travel per month	549	# travel per month	13				
# travel per month*	2196	cost per travel	6	cost per travel	1				
cost per travel (USD)	3	Total	\$ 3 294	Total	\$ 1350				
	1 0 TOT 1		• • • • • •						
Grand total PHC	\$ 6 588	Grand total districts	\$ 3 294	Grand total regions	\$ 1 350				
Grand total PHC Monthly total Yearly total	\$ 6 588 59% \$ 11 232 \$ 134 784	Grand total districts	\$ <u>3294</u> 29%	Grand total regions	\$ <u>1350</u> 129				

Figure 5: Budget for Each Level of Sample Transportation

Figure 5: provides details about transportation costs of such a system, sorted by area (PHC \rightarrow Rayon, Rayon \rightarrow Region, Region \rightarrow Reference)

Details about training costs and sampling equipment costs can be found in Annex G.

Table 4 and Figure 6 summarize all the costs for a basic but reliable system for sample transportation. As seen, the costlier part is the transportation from all PHCs to the district laboratory.

Transportation PHC-district	\$ 79 056
Transportation district-region	\$ 39 528
Transportation region-reference	\$ 16 200
Sampling equipment	\$ 16 134
Training issues	\$ 15 945
Overheads 6%	\$ 10 012
TOTAL yearly	\$ 176 875
Cost/PHC	\$ 162
Cost/district	\$ 648
Cost/region	\$ 1 473

Figure 6: Graphic Representation of the Budget for Transportation of Lab Samples

In Annex G, a tool newly developed by WHO/CSR/Lyon has been used in order to cost the entire national Georgian network.

4. Main Recommendations for Georgia

About the overall framework in which the network will be implemented:

- 1. Define terms clearly
- 2. Create a laboratory bureau at the Ministry of Health level

About license and inspection

- 3. Refine license criteria, and include a time component for validity of license
- 4. Develop a national checklist for laboratory inspection, to include biosafety, EQC, and quality assurance
- 5. Include a time-limited duration for the license once awarded

About norms and standards

- 6. Review the different types of laboratories and reduce to four clear levels
- 7. Review the list of analyses that should be performed at each level, including a price coefficient, and the recommended method to be used to perform the analysis
- 8. Develop a reasonable pricelist covering the main analyses that should be available in public labs
- 9. Provide guidance to the equipment unit in order to help them with finalizing the new equipment norms, maintenance issues, and manufacturer recommendations
- 10. Finalize the biosafety standards being drafted by NCDC and plan their progressive introduction into the license requirements
- 11. Promote the national standardization of specimen sampling by developing a 'sampling certificate' that each person taking samples should earn prior to working
- 12. Develop minimum standards allowing reagents registration in Georgia⁸.

About several indirect units useful for the network implementation:

- 13. Promote a health economics survey about the relevancy of a national laboratory supply unit, eventually joined to other existing structures (drugs, medical supplies, radiology)
- 14. Create a specimen dispatching unit in Tbilisi inside one of the reference laboratories

About global policy for laboratories and quality assurance

15. Implement a global QA program including

⁸ As this issue seems an emergency when looking at some kits sold in Tbilisi, it is recommended to adopt as soon as possible temporary standards based on an existing one (European Economic Commission, French, U.S. Food and Drug Administration, etc.) until Georgia's is developed.

^{4.} Main Recommendations for Georgia

- △ QA manual (NCDC staff trained in Lyon should be in working group)
- \triangle Provision of reference material
- △ Organization of external quality control
- △ Promotion of internal quality control
- △ Organization of training sessions

About the network

- 16. Write a proposal and contact funding agencies, soliciting their interest in network creation participation
- 17. Organize the network

Note: on the CD-ROM provided with this report, a set of documents useful for network implementation can be used (section "Other documents"). Annex H also contains the list.

Annex A. Other Programs and Partners Working on Laboratory Strengthening

TADR/DTRA/Highly Dangerous Pathogens

The Biological Weapons Threat Agent Detection and Response (TADR) Surveillance System is a program run by the US Ministry of Defense, aiming at:

- Establishing an integrated, secure and sustainable disease surveillance system in Central Asia (Uzbekistan and Kazakhstan are also part of this project)
- Ensure biosecurity and biosafety of biological facilities
- Support human, environmental, and veterinary disease monitoring
- A Promote potential for integration into a regional disease surveillance system

This will be done through:

- Construction of several high security laboratories in the country
- Modern, standardized, reliable diagnostics methods, as PCR-based diagnostics, ELISA.
- Improved communications, transport, and integration e.g. computerization
- Data analysis and sharing

In addition to activities strengthening epidemiology and disease surveillance in general.

This project is focusing on a limited number of diseases:

- ▲ Endemic plague
- ▲ Brucella
- ▲ Anthrax
- ▲ CCHF
- ▲ TBE
- ▲ Unique viruses (Tomdy, Barmody, Sadavaria Valley Fever, Karshi)
- ▲ Camelpox
- ▲ HFRS

Figure A-1. Operational Flowchart of the DTRA Project

World Bank Project on Primary Health Care

The main project development objective is to improve coverage and utilization of quality primary health care (PHC) based on a model of family medicine/general practice, with an emphasis on reaching the poor and disadvantaged. In the long run, strengthening PHC services is expected to have a beneficial impact on the health status of the Georgian population through prevention, early detection, and the treatment of diseases responsible for a high burden of disease in the population (e.g., cardiovascular diseases, tuberculosis, and acute respiratory infections). Implementation of PHC is also expected to have a positive impact on the quality, cost-effectiveness and efficiency of health service delivery in Georgia. Three components of this project have been defined; a summary of these components is below. Issues related to the laboratory are **bolded** and detailed.

Component 1: PHC Service Delivery (Estimated Costs: US\$ 15.23 million total)

- ▲ Sub-component 1.1: Establishing PHC Clinics in Urban and Rural Areas The purpose of this sub-component is to develop PHC services in up to 74 rural and high mountain areas. The project would support: (i) civil works for refurbishing the PHC clinics; (ii) basic office, diagnostic, therapeutic and **laboratory equipment for all PHC clinics**; (iii) vehicles in areas where the terrain is rough; and (iv) packet radio communication in selected locales.
- ▲ Sub-component 1.2: PHC Referral Pilot: The objective of this sub-component is to test how the referral mechanism will work for maternal and child health services from PHC clinics in rural and high mountain areas to the regional hospital level. This pilot will be carried out in the Imereti region, and will link PHC clinics to the Kutaisi MCH Center. The project will support: (i) partial rehabilitation of Kutaisi Maternity and Pediatric Hospital to establish the perinatal center; (ii) office, diagnostic, therapeutic and laboratory equipment for the center; (iii) training workshops for PHC teams in the latest international protocols for MCH; and (iv) local technical assistance for monitoring and evaluation of the pilot.
- Sub-Component 1.3: Community-based Information, Education and Communication (IEC).

Component 2 - Institutional Development (Estimated Costs: US\$ 7.29 Million Total)

Sub-component 2.1 - Capacity-building for PHC Training: The purpose of this sub-component is to support training capacity in PHC. The proposed project will support: (i) civil works for rehabilitation of up to five regional family medicine training centers (RFMTC) and selected office space for the Family Medicine Faculty; (ii) basic office, diagnostics, therapeutic and **laboratory equipment for the RFMTC** and office equipment for the Postgraduate Faculty; (iii) stipends for doctors and nurses undergoing the training of trainers (TOT) and for trainees undergoing retraining in family medicine/general practice; (iv) international and local technical assistance for developing a family medicine residency program curriculum and a business plan for the Family Medicine Faculty; and (v) workshops and study tours for staff of the Family Medicine Faculty to help build capacity in the management of family medicine residency programs, continuing education for family doctors and accreditation and licensing of family doctors. During Phase I, two RFMTCs will be developed in Kutaisi and Batumi for Western Georgia

Sub-component 2.2 - Capacity-building in the Management of PHC Services: The objective of this sub-component is to build the capacity of the Public Health Department within the MoLHSA for policy-making, planning and regulation of PHC services.

Sub-component 2.3: Strengthening Health Management Information Systems for PHC: The objective of this sub-component is to strengthen the design and implementation of a health management information system (HMIS) for primary health care.

Sub-component 2. 4: Support for PHC Health Care Financing Reforms: The objective of this subcomponent is to build health care financing policy-making capacity in Georgia.

Component 3 - Project Management Support (Estim. costs US\$ 1.24 million total)

European Union Project on PHC in Kakheti Region

The European Commission will support the primary health care reform undertaken by the Georgian government with a total grant of \in 7.5 million for a period of three years (2003-2006). The project provides technical assistance at national and regional level in the areas of capacity building and reform of the health care finance system (allocation of \in 2.5 million). It also foresees investments in Kakheti region in terms of **provision of equipment and refurbishment** of existing PHC infrastructure and related water and energy supplies, training of doctors, nurses and practice managers, and addressing information, education and communication needs of health professionals and the population (\in 5 million).

Before refurbishing, constructing and equipping PHC facilities and Family Medicine services in Kakheti region, the government decided that an inventory and needs assessment of the existing health infrastructure and resources should be conducted. The European Union supported this decision and a data collection exercise (September-November 2003); data processing and mapping with GIS (Geographical Information System) was conducted in joint efforts with Geographics Company supported by DFID. Subsequently, a criteria-based approach has been applied by a team of European experts to prioritize the allocation of funds for refurbishment, construction, equipment and staffing to assist the MoH in developing a more effective and optimal system for allocation of health care resources toward PHC in Kakheti region.

In the field of laboratory, several PHC/polyclinics will be re-equipped and re-supplied with reagents and consumables. The analysis package will be limited to a basic list (level IV in the laboratory

classification). The possibilities of also refurbishing a regional Kakheti laboratory are being considered by those responsible for implementation.

Important note: Those responsible for disease surveillance in the MoH should rapidly consider the issues of the analysis package by level (and equipment related to it) as this EU granted project will need such documents very soon and this could be the ideal situation to field test these packages on a large scale

Tuberculosis Program

Several partners are involved in TB surveillance/diagnosis.

When only considering the diagnosis aspect, USAID and Merlin are involved in re-equipping several diagnosis centres (In Tbilisi for USAID, in the Gori area for Merlin).

The work performed is appropriate, and a basic, but reliable, laboratory has been rapidly visited in Gori hospital. See photographs in Annex C.

Another program, funded by GTZ, was also focusing on diagnosis:

After a couple of TB laboratory assessments, it was evident that the number of TB diagnosis laboratories in Georgia was bigger than the needs. For example, some labs were having an average number of 0,5 per day.

It has been decided to close some of the laboratories and to strengthen the remaining ones. Closed laboratories have been transformed into "sputum collection sites" able to collect, register and ship specimens to the next TB laboratory. Today, around 35 collection sites and 35 TB laboratories are available.

Figure A-1. Map Showing Organization of Specimen Collection for TB

The map in Figure A-1 shows how the system is organized. The transportation is done on a weekly basis, using local buses. Special boxes are used to transport the specimens. Results are brought back with

another bus (2 directions). The yearly cost to run the transportation issues only is around 800-1000 USD per month:

35 transports X 4.5 weeks X 2 = 315 transportations.

The system has a final price around US\$ 3. This amount is very reasonable.

Strengths of the system:

- ▲ The organization
- The rationalization of TB diagnosis in the country (balance between labs and collection sites)
- ▲ The use of local transportation systems \rightarrow reliable and sustainable
- The low cost of the system \rightarrow sustainable

Weaknesses of the system:

- Funded by an external agency \rightarrow what about the transportation costs after the project?
- ▲ Very good system at district level, but no communication between the peripheral TB lab and the central reference one → very few sputum referred for TB culture (only done at reference level)
- Transportation is not following international security standards (triple package, labeling, security, confidentiality management...)

This system is a good example of specimen transportation/laboratory networking. Without the lack of communication with the central level, it would have been an ideal system. As for safe blood and HIV laboratories (see below), those responsible for TB would also be very interested in participating in a common network for sample and specimen transportation.

Disease Surveillance/USAID/PHRplus and CIF

A large project on health information and disease surveillance has been implemented by the Georgian NGO Curatio International Foundation (2002-2005). Work focuses on several components of health information and VPD surveillance:

- Strengthening immunization MIS
- Strengthening VPD surveillance
- Improving management capacities

The importance of laboratory confirmation was highlighted when beginning VPD surveillance. A global assessment of several laboratories was carried out in July 2002 (see *ix*), and a laboratory *quality assurance manual for VPD diagnosis* was issued in 2004. Laboratory QA manuals issued in Georgia are not numerous and such tools really impact the way analyses are performed (see photograph of the manual).

Figure A-2. VPD Quality Assurance Manual

Laboratories networking together usually share the same quality assurance manual, covering all tasks and procedures used in a laboratory. The VPD quality manual could ideally be the basis of a more comprehensive manual able to cover all communicable disease diagnoses, and perhaps more.

Malaria Network

The map shows the districts with reported cases of malaria in 2000.

Georgia is the only European country that submitted a proposal to *The Global Fund* that received a positive answer from them. This proposal will really allow them to improve the management of Malaria in the country.

Prior to this project, each district is supposed to have a parasitology laboratory (half of the

former soviet "sanepi" system that is in charge of diagnosis. With differences from one lab to another, they are mostly not reaching satisfactory levels.

The future project (1,125 Mill. USD including 0,8 Mill. USD from Global Fund) will allow the persons in charge of malaria to strengthen the existing national programme for effective Malaria prevention and control. Six different strategies will be used together:

- 1. Strengthening institutional capacities of the National Malaria Control Programme (NMCP) and the general health care services;
- 2. Improvement of national capacities for and **access to early diagnosis** and adequate treatment of Malaria;
- 3. Promotion of cost effective and sustainable vector control;

- 4. Strengthening of the country surveillance mechanism;
- 5. Improvement of community awareness and participation in malaria control and prevention, and
- 6. Enhancing intersectional collaboration.

In the field of laboratories, different activities will be carried out:

- Provision of 80 microscopes
- Provision of adequate stain and consumables
- Refreshing of the microscopists

Through this programme, a future malaria-specific laboratory network will be promoted soon.

HIV/AIDS

Thirty-five transfusion laboratories are present in the country. They insure blood safety in performing HIV and Hepatitis serologies. Few of them have an ELISA machine available for serology. Most of them are using rapid tests.

A very good serology/virology laboratory is located in the infectious disease hospital in Tbilisi, and is able to confirm any abnormal result. Around 10 sera are referred to them monthly for HIV confirmation. Two other larger laboratories will be available in Batumi and in Zugdidi.

When peripheral laboratories are referring samples, they usually freeze the serum and pack it with ice-packs into a cool bag. The bag is then carried to Tbilisi by one of the laboratory technicians, either by road or by car. The system works well for this small amount of samples but is not cost-effective (cost of the technician transportation and fees) and doesn't allow regular surveys to be performed.

Dr. Tengiz Tsertsvadze, National AIDS coordinator, expressed his interest for a global multi-disease network for laboratory specimen transportation that may allow each vertical programme to facilitate the confirmation of some important diseases.

WHO/CSR Strengthening Program

A two-year training and mentoring program for 8 Eastern and Central European countries⁹ began in early 2003. The aim of this program is to strengthen disease surveillance in:

- Actively involving laboratories in the surveillance system
- Providing refreshers in good laboratory practices
- Providing strong training in biosafety and quality assurance
- Begin the creation of a national laboratory network
- ▲ Help to write a national plan of action for laboratory activities

⁹ Belarus, Bulgaria, Georgia, Moldova, Romania, Russia, Turkey, Ukraine

Two high-level people from NCDC attended this program and are actively involved in these activities $^{\scriptscriptstyle 10}$

In addition to this mentoring program, several tools and training sessions have been developed by WHO/CSR/Lyon:

- A laboratory assessment tool
- An Internet resource portal for public health laboratories
- A costing tool for the laboratory network (still being developed, see its field-test in Georgia in Annex G)
- ▲ Quality assurance programs (regional & national)

Training modules for laboratories (biosafety, quality assurance, samples management during outbreaks)

¹⁰ Details can be found at www.who.int/csr/labepidemiology

Annex B: Assessment of Gori Hospital Bacteriological Laboratory

Ű	ner ar me
1-building facilities and utility service	61%
Building conditions	50%
Fluids conditions (Water supply conditions)	48%
% of benched room utilized	100%
Number of benched rooms (level dpt)	50%
Communication	20%
Communicable diseases coverage	100%
2-biosafety, hygiene and security	8%
Use of safety equipments	30%
Availability of safety procedures	0%
Level of safety trainings	0%
Safety conditions	25%
Disinfection/sterilization of equipments	0%
Availability of waste disposals	0%
Availability of biosafety documentation	0%
3-specimen collection and recording	45%
Quality of samples received	80%
Sampling procedures	0%
Quality of sampling request form	0%
Critical thinking when handling samples	0%
Quality of the logbook	67%
Macroscopic examination	50%
Specimen storage	100%
Quality of the specimen tracking	60%
4-equipment	48%
% of mini funct. Equipment available	55%
% of opti funct. Equipment available	28%
% of basic mini funct equipment available	71%
% of basic opti funct equipment available	39%
5-reagents and supply	47%
Reagents preparation from powder	50%
Quality of reagent management	0%
Availability of funds for reagents	50%

Table B-1: Details of the Gori Computerized Assessment

Use of expired reagents	0%
Availability of basic staining reagents*	50%
Availability of special staining reagents*	NA
Availability enteric transp./culture media*	67%
Availability menin. transp./culture media*	100%
Availability other transport/culture media*	100%
Availability AST reagents/culture media*	25%
Availability of specific antisera*	25%
Availability of serology reagents*	NA
6-analysis and test performed	71%
Availability of screening tests	100%
Global indicator on availability of reagents	96%
AST availability	50%
Availability of identification	60%
Availability of high level identification	NA
Availability of very specific tests	50%
7-laboratory staff & working time	53%
Presence of a senior staff	100%
% of senior staff	100%
Presence of cleaning staff	100%
Availability of staff training	0%
Availability of formal training	0%
Analysis decision	100%
Working hours and days of work	25%
Critical thinking outside working hours	0%
8-total quality	14%
Availability of technical procedures	67%
Availability of IQC	0%
Availability of EQC	0%
Availability of temperature charts	33%
Performing of preventive maintenance	0%
Performing of equipment adjustments	0%
Availability of documentation/spare parts	0%

General indicator: 37%

9-reporting, analysis & communication	19%	10- outbreak participation	0%
Availability of disease reporting	20%	Involvement during outbreaks	0%
Availability of activity recording	50%	Specific outbreak supply	0%
Availability of electronic activity recording	NA	Outbreak participation	0%
Availability of sample referring	0%	Specific outbreak guidelines	0%
Laboratory supervision	0%	Specific outbreak procedures	0%
Availability of lab/lab collaboration	25%	Critical thinking with outbreak specimens	0%

• NA means that these analysis are not applicable, i.e., not needed in the lab, 0% mean that no reagents are available but should be present

Annex C: Photographs of Laboratories Assessed in Gori

Hospital bacteriology laboratory

Microscopy facility (monocular solar microscope); expired reagents (1993) bought in Tbilisi the month prior to consultancy; wooden stock for heating (-5° the day of assessment) stored in bacteriology room.

Hospital clinical laboratory

Biochemistry bench; sampling room; electrical wires (centrifuge)

Children hospital clinical laboratory

Hematology bench

Old spectrophotometer (but still functioning)

Tuberculosis centre laboratory

Sanitary inspection (former "sanepi") laboratory

Annex D: Analysis by Level

This first table is a summary of a book just issued by both the license unit and the NGO "Genesis" at the end of 2004. This table shows, depending on the level of the laboratory (3 levels defined) which analysis should be performed and which techniques linked to these analyses should be available (sampling, staining, observing, etc.). Any time you advance a level, all the analyses of the lower level should also be performed (in order to avoid useless repetition)

Note: the book was only available in Georgian, and a rapid translation was kindly performed on the occasion by Dr. T. Zardiashvili. There may be some imperfections or terminology may not be very accurate.

LEVEL	TYPE OF MEDICAL UNIT	ANALYSIS	METHODS
		Clinical laboratories	
I	* ambulatory	blood general analysis	obtaining blood from finger
		Hemoglobin	blood processing and microscopy in liquid condition
	* ambulatory, day hospital	N of erythrocytes	blood smear fixation/staining, hemato/cyto- diagnostics
		N of leucocytes	urine processing and microscopy
	* primary health care	N of platelet	stool processing and microscopy
		rate of erythrocytes sedimentation	phlegm smear fixation/staining, hemato- and
	* district hospital	blood coagulation and bleeding time	cyto- diagnostics
		microscopy smears for malaria identification	
		urine general	
		determination of proteins in urine	
		determination of glucose in urine	
		determination of bile pigments in urine	
		stool general analysis	
		stool research for latent bleeding	
		phlegm mucous general lab. investigation	
		Biochemical analysis	
		determination of glucose in urine	obtain blood (venous and capillary)
		prothrombin index determination	isolation of plasma

Table D-1. Provisory List of Analysis by Level Developed by the License Unit and NGO "Genesis"

LEVEL	TYPE OF MEDICAL UNIT	ANALYSIS	METHODS
		Clinical laboratories	
П	* district (municipal hospital)	reticulocytes determination in blood	sampling and investigation of duodenal contents
		cytological determination of fetal hemoglobin	sampling and rese investigation arch of gastric juice
	* public health care centre	blood group and rhesus	genital samples lab diagnostics
		ketone and nitrites in blood	CSF lab research
	* medical-social hospital	rate of haemturia	
		nepichenko rule (shaped elements in urine)	
		Zimnitski assay	_
		Ben-Jones albumen determination in	
		stool research for helminthes & helminthes eggs	
		stool research for protozoa identification	
		CSF bacteriology	
		lab research of duodenal contents	
		determination of gastric acidity	
		cytobacteriology of skin and mucous membranes	
		cytobacteriology of eye swab	
		cytobacteriology of vaginal swab	
		cytobacteriology of urethral swab	
		swab bacteriology to detect gonococcus	
		Biochemical analysis	
		total protein in blood	
		creatinin in blood	
		urea in blood	
		Thymol trial	
		glucose determination in blood	
		B lipoproteins determination in blood	
		total cholesterol in blood	
		total bilirubin	
		direct bilirubin	_
		Iron	
		rheumatic factor	
		C-reactive protein in blood	
		direct bilirubin	
		diphenylamine trial	
		antistreptolyzine determination in blood	
1		Theomostasis	

LEVEL	TYPE OF MEDICAL UNIT	ANALYSIS	METHODS
		Clinical laboratories	
		Coagulogram	
		blood coagulation time by lvy	
		time of serum recalcification	
		fibrinogen concentration determination	
		thrombin time	
		fibrinolysis activity determination	

LEVEL	TYPE OF MEDICAL UNIT	ANALYSIS	METHODS
		Clinical laboratories	
Ш	* regional (republic) hospital	hematocrit determination in blood	lab investigation of serosity
		osmotic resistance of erythrocytes	
	* specialized hospital	determination of mean diameter of erythrocytes	
		cytological determination of fetal hemoglobin	
	* clinical hospital	puncture sample cytological research	
		catheter (from cavity organs) cyto- bacteriology	
	* dispensary	sperm cytobacteriology	
		vagina purity rate	
	* polyprofile dispensary	direct fluorescence for chlamydia, virus etc detection,	
		prostate secretion lab investigation	
	* polyclinic	various pathologic material research for BK	
	* maternity welfare centre/clinic	Biochemical analysis	
		Triglycerides	
		HDL cholesterol	
		LDL cholesterol	
		aspartate aminotransferase ASAT	
		alanine aminotransferase ALAT	
		gamma-glutamyl transferase GGT	

Table D-2. Detailed List of Analysis by Level to be Filled in.

This second table is a list of all analysis, grouped by discipline. It should be filled in before initiating the laboratory network.

Sampling						ESR determination						
Analysis name	РНС	DIS	REG	REF	ABR	Hematocrit						
blood (capillary)						hemoglobin electrophoresis						
blood (veinous)						hemoglobin F measurement						
CSF						hemoglobin measurement (total)						
Ear						hemoglobin solubility (itano)						
Ganglion						hemopathy diagnosis						
induced expectorations						hemopathy follow-up						
Medullar						Medullogramme						
Mycology						research of Heinz particles						
Nose						research of sickle cells						
overflow (dropsy, pleural, articulation)						reticulocyt count						
Skin						Splenogramme						
Sputum						thrombocyte count						
STDs samples						Hemostasis						
Stool						Analysis name	F	нс і	DIS	REG	REF	ABR
Throat						antithrombin III determination						
Uretral						beta thromboglobulin						
Vaginal						bleeding time						
Wound						cephalin activated time						
Cytology-hematology						circulating anticoagulant research						
Analysis name	РНС	DIS	REG	REF	ABR	differential II, VII, IX, X						
Adenogramme						euglobulin lyse test						
auto-hemolysis test						F IX determination						
blood hemogramme (complete)						F VIII determination						
blood protoporphyrin determination						F XI						
cyto-chemical analysis						F XII						
determination CD4 CD8 CD3						F XIII						

FDP determination			
fibrinogene determination			
fibrinopeptid A			
LMW heparin measurement			
protein C determination			
protein S determination			
prothrombin time			
standard heparin measurement			
thrombin time			
thrombocytic factor 4			
thromboxan B2			
Willebrand factor determination			

Immuno-hematology

Analysis name	PH	2	DIS	REG	REF	ABR
ABO grouping						
direct compatibility test						
direct Coombs test						
irregular antibody research						
other RBC antigen determination						
Rhesus factor determination						
Rhesus phenotype determination						
thrombocyte grouping						
Bacteriology						
		~ .	- 10		~ ~ ~ ~	

Analysis name	PHC	DIS	REG	REF	ABR
anal cyto-bacteriology (cytology + ID)					
antibiotic seric concentration determination					
antibiotic susceptibility testing (1 germ)					
antigen detection Yersinia					
antituberculosis sensitivity testing					
articulation overflow cyto-bacteriology					
basic sample cytology (microscopy + staining)					
broncho alveolar washing cyto-bacteriology					

broncho pulmonary cyto-bacteriology
catheter cyto-bacteriology
CSF cyto-bacteriology
dropsy overflow cyto-bacteriology
eye sample cyto-bacteriology
genital cyto-bacteriology (cytology + ID)
Hemoculture
MIC determination
miscellaneous overflow cyto-bacteriology
nose-ear-throat cyto-bacteriology
pleural overflow cyto-bacteriology
pus cyto-bacteriology
research of bacterial toxin
research of Chlamydia
research of diphtheria
research of mycobacteria (ZN stain + culture)
research of mycobacteria (ZN stain)
research of mycobacteria species (biochemistry)
research of mycoplasma
research of pertussis
research of rickettsia
research of specific aerobic bacteria
research of specific anaerobic bacteria
research of specific bacteria (immunofluorescence)
research of spirochetes
serology borrelia
serology brucella
serology Chlamydia
serology coxiella burnettii
serology francisella
serology leptospira
serology pasteurella
serology streptococcus

serology syphilis	
serotyping of bacterial strain	
skin cyto-bacteriology	
sperme cytobacteriology	
stool cytobacteriology	
urinary cyto-bacteriology (AS + cytology + ID)	
urinary strip analysis (2 parameters)	
urinary strip analysis (full parameters)	
wound cyto-bacteriology	

Mycology

Analysis name	РН	С	DIS	REG	REF	ABR
dermatophytes identification						
exotic fungi identification						
filamentous fungi identification						
fungi microscopy						
fungi sensitivity testing						
Malassezia furfur identification						
yeast identification						

Parasitology

Analysis name		РНС	DIS	REG	REF	ABR
stool parasite research (microscopy)						
stool parasite research (microscopy + concentration)						
parasitic stool larva identification						
malaria diagnosis (microscopy)						
malaria diagnosis (immunological)						
other blood borne parasites diagnosis						
derma/skin parasites diagnosis						
antigen detection aspergillus						
antigen detection candida						
antigen detection Cryptococcus						
antigen detection distomatosis	Ī					
antigen detection echinococcus	Ī					

antigen detection histoplasma	
antigen detection leishmania	
antigen detection toxoplasma	
antigen detection trichinella	

Immunology Analysis name PHC D antiDNA soluble antibodies determination I I antiDNAn antibodies determination (IF) I I antihistones antibodies determination I I antimitochondry antibodies determination I I antineutrophil antibodies determination I I antinuclear antibodies determination I I antiphospholipid antibodies determination I I IgE specific determination I I IgE total determination I I rhumatoid factor determination (Waaler-Rose) I I

РНС	DIS	REG	REF	ABR

Virology

 Analysis name

 antigen detection adenovirus

 antigen detection rotavirus

 antigen detection rotavirus

 antigen detection RSV

 serology adenovirus

 serology arbovirus

 serology cytomegalovirus

 serology enterovirus

 serology Halta V

 serology HBV

 serology HBV

 serology HEV

РНС	DIS	REG	REF	ABR

serology HIV serology HSV (1&2) serology HTLV serology influenza serology measles serology mumps serology rabies serology RSV serology rubella serology VZV viral culture diagnosis (generic)	saralagy HIV			
serology HSV (1&2) Image: Constraint of the serology HTLV serology influenza Image: Constraint of the serology measles serology measles Image: Constraint of the serology measles serology mumps Image: Constraint of the serology rabies serology rabies Image: Constraint of the serology rabies serology rabies Image: Constraint of the serology rabies serology rubella Image: Constraint of the serology VZV viral culture diagnosis (generic) Image: Constraint of the serology rubel	serology III v			
serology HTLVserology influenzaserology measlesserology mumpsserology parvo B19serology rabiesserology RSVserology rubellaserology VZVviral culture diagnosis (generic)	serology HSV (1&2)			
serology influenzaImage: Constraint of the serology measuresserology mumpsImage: Constraint of the serology parvo B19serology rabiesImage: Constraint of the serology rubellaserology rubellaImage: Constraint of the serology VZVviral culture diagnosis (generic)Image: Constraint of the serology rubella	serology HTLV			
serology measlesserology mumpsserology parvo B19serology rabiesserology RSVserology rubellaserology VZVviral culture diagnosis (generic)	serology influenza			
serology mumps	serology measles			
serology parvo B19	serology mumps			
serology rabies	serology parvo B19			
serology RSV	serology rabies			
serology rubella	serology RSV			
serology VZV viral culture diagnosis (generic)	serology rubella			
viral culture diagnosis (generic)	serology VZV			
	viral culture diagnosis (generic)			

Dynamic trials

Analysis name	РНС	DIS	REG	REF	ABR
creatinine clearance					
induced hyperglycemia					
urea clearance					
urine concentration trial					
urine dilution trial					

Hormons

Analysis name	РНС	DIS	REG	REF	ABR
17 OH corticosteroids					
17 OH pregnenolone					
25 OH D3					
ACTH					
ADH					
androstendiol					
C peptide					
calcitonin					
corticosteron					
cortisol					
cortison					

СРН			
desexuantical			
DITA			
E2			
E5			
GH			
glucagon			
GRH			
insulin			
LH			
LHRH			
melatonin			
osteocalcin			
P substance			
parathormon			
plasmatic cathecolamin			
plasmatic CGH			
pregnenolone			
pro insulin			
progesterone			
prolactin			
РТН			
renin			
serotonin			
T3, FT3, total T3			
T4, FT4, total T4			
TBG			
testosterone			
transcortin			
trypsin			
F &			

TSH			
urinary 17-cetosteroids			
urinary 6 beta OH cortisol			
urinary aldosteron			
urinary CGH (pregnancy)			
urinary estrogens			
urinary free cortisol			
urinary OH indol acetic acid			
urinary total catécholamin			
urinary vanylmandelic acid			

Enzymes

Analysis name	РНС	DIS	REG	REF	ABR
5' nu					
aldolase					
ALP					
amylase					
СКМВ					
СРК					
G6PD					
GGT					
GO					
GP					
LDH					
lipase					

Proteins

Analysis name	РНС	DIS	REG
albumin			
alpha 1 antitrypsin			
alpha 2 macroglobulin			
apoprotein A1			
apoprotein B			
beta 2 microglobulin			

PHC	DIS	REG	REF	ABR

C3			
C4			
CRP			
cryoglobulin research			
electrophyoresis of proteins			
ferritin			
fructosamin			
haptoglobin			
HbA1c			
hemolytic complement 50			
hemopexin			
hyaluronic acid			
Lp (a)			
monoclonal dysglobulinemia diagnosis			
myoglobin			
orosomucoid			
prealbumin			
procalcitonin			
total IgA			
total IgG			
total IgM			
total proteins			
troponin			1

Vitamins

Analysis name						
folic acid						
vitamin A						
vitamin B1						
vitamin B12						
vitamin B2						
vitamin B6						
vitamin E						

РНС	DIS	REG	REF	ABR

	I		1	1	1
vitamin P					

Tumor markers

Analysis name	
AFP	
CA 125	
CA 15-3	
CA 19-9	
CA 50	
CEA	
PSA	

РНС	DIS	REG	REF	ABR

Biochemistry (blood, urine, CSF...)

Analysis name	РНС	DIS	REG	REF	ABR	
ammoniac						alcool
bicarbonats						amikacin
bilirubin (tot., free, conj.)						aspirin
calcium						barbiturics
chlore						benzen
cholesterol						benzodiazepin
copper						canabis
creatinin						carbamazepin
glucose						ciclosporin
iron						cocain
iron fixation capacity						digoxin
lactic acid						INH
lithium						lead
magnesium						methotrexate
osmolarity (measured)						morphin/morp
phosporus						paracetamol
potassium						phenytoin
sodium						theophyllin
triglycerides						tricyclic drugs
urea						vancomycin

Gazometry

uric acid

Analysis name
2-3 diphospho glycerate
carbon monoxyde
methemoglobin/hemoglobin
pCO2
pH
pO2
SaO2

РНС	DIS	REG	REF	ABR

Drug & toxic

<u> </u>	-	
Analysis name		PHC
alcool		
amikacin		
aspirin		
barbiturics		
benzen		
benzodiazepin		
canabis		
carbamazepin		
ciclosporin		
cocain		
digoxin		
INH		
lead		
methotrexate		
morphin/morphinics		
paracetamol		
phenytoin		
theophyllin		
tricyclic drugs		
vancomycin		

РНС	DIS	REG	REF	ABR

Molecular biology

Analysis name	РНС	DIS	REG	REF	ABR
CCHF					
Chlamydia					
HBV, viral DNA					
HCV, viral RNA					
HIV viral load					
mycobacteria					
SARS virus diagnosis					

Annex E. Equipment by Level of Laboratory

The minimal and optimal quantity of equipment that should be available in the different types of laboratory that are listed below in Table E-1.

Please note that this list covers bacteriology, virology, serology, parasitology, biochemistry, hematology and molecular biology.

Once analysis by level is defined (including methodology that should be used at the different levels), this list should be filled in order to enable laboratories to perform the set of analyses planned, using the methodology planned.

"Mini" and "opti" refer to the MINImal stock that should be available to perform the analysis decided for the considered level, when OPTImal will show the comfortable amount of stock that should be provided to the considered lab.

	PHC		district		intermed.		reference	
	mini	opti	mini	opti	mini	opti	mini	opti
autoclave, 120 litres								
autoclave, 60 litres								
automated cell counter								
automatic pipetters 0-20 µl								
automatic pipetters 200-1000 µl								
automatic pipetters 20-200 µl								
biochemistry autom. analyzer								
blood gas analyzer								
blood grouping plates								
candle jar for culture								
centrifuge basic								
centrifuge cooled								
centrifuge hematocrit								
CO2 incubator								
coagulometer								
computer (complete)								
electrophoresis equipment								
ELISA equipment (W/I/R)								
ESR system								

Table E-1: List of Equipment to be Filled in, by Level

flame photometer				
freezer-20°				
freezer-70°				
fridge				
gel pulse electrophoresis				
glassware kit, set *				
heated magnetic agitator				
immunoanalysis autom. analyzer				
incinerator basic				
incinerator large				
incubator, 30°				
incubator, 37°				
incubator, 42°				
Internet connection (year)				
laboratory information system				
mallassez cell + dil. pipette				
manipulation box				
McFarland photometer				
McFarland scale				
media dispenser				
microscope binocular				
microscope fluorescence				
microscope inverted				
nephelometer/turbidimeter				
oven				
pH meter				
photometer, basic				
pressure cook, 12 litres				
printer (laser)				
protective Plexiglas screen				
rotative agitator				
safety cabinet class II				
safety cabinet class III				
scale basic (0,1 g)				
scale precision (0,1 mg)				
slide stainer (hematek)				
spectrophotometer				
thermocycler				
vortex agitator				
water distiller				
waterbath				
For the specific purpose of VPDs, a list has been defined in 2003 following a workshop attended by several key persons from Georgia (MoLHSA, NCDC, WHO, etc.) but only including 3 levels of laboratories (without PHC level). This list only covers VPDs needs (no biochemistry or hematology).

Equipment	Level III laboratories		Level II laboratories		Level I laboratories		
	min.	opt.	min. opt.		min. opt.		
autoclave	3	5	2	3	1	2	
basic scale	1	2	1	1	0	1	
binocular microscope	5	10	3	5	2	3	
candle Jar	3	5	1	3	0	0	
clothes washing machine	1	1	0	1	0	0	
CO2 incubator	1	2	0	0	0	0	
computer+printer	2	4	1	2	0	1	
diluter	1	2	0	1	0	0	
dryer	2	3	1	1	0	1	
electrophoresis equipment	1	2	0	0	0	0	
ELISA equipment (W/I/R)	2	3	1	2	0	0	
emergency power supply	1	1	1	1	0	0	
fluorescence microscope	1	2	1	1	0	0	
freezer -20°	3	5	1	2	0	1	
freezer -70°	1	2	0	1	0	0	
fridge	4	8	2	5	1	2	
gel pulse electrophoresis	1	1	0	0	0	0	
glassware kit	1	1	1	1	1	1	
heated magnetic agitator	1	2	1	1	0	0	
incubator, large sized	2	4	0	1	0	0	
incubator, small sized	3	5	1	2	0	0	
Internet connection	1	1	1	1	0	1	
manipulation box	0	0	1	2	0	1	
Mc Farland photometer	1	2	1	1	0	0	
media dispenser	1	2	1	1	0	0	
oven	2	3	1	2	1	1	
photographic equipment	1	1	0	0	0	0	
plexiglass screen	3	5	2	4	1	2	
precision scale	1	2	1	1	0	0	
rotative agitator	1	2	1	1	0	0	
safety cabinet class II	2	4	0	1	0	0	
safety cabinet class III	1	2	0	0	0	0	
slide dryer	1	3	0	1	0	1	
thermocycler	1	3	0	0	0	0	

Table E-2. Illustrative List of Equipment by Level (used by VPDs surveillance program)

vortex	3	3	1	2	0	1
washing machine	1	1	0	1	0	0
water distiller	2	2	2	2	1	1
waterbath	2	4	1	2	1	1

Annex F: List of Procedures to be Developed for QA

Premises and generic procedures

- 1. QA responsible designation procedure
- 2. Global map of the laboratory
- 3. Restricted areas procedures
- 4. Electrical, watery, gas and other fluids pathway
- 5. Arrows, signs and labels in the laboratory
- 6. Thermal area procedures (air conditioning, heater, cold rooms)
- 7. Emergency evacuation procedure
- 8. Procedures in case of fire, chemicals problem, electrical hazard, biohazard
- 9. Cold chain procedures
- 10. Decrees or official texts ruling the laboratory
- 11. List of analysis performed in the laboratory
- 12. Restrictive list to be performed at night & weekend

Staff management & organization procedures

- 13. List of the staff, including flow chart & responsibilities
- 14. One page by staff: address, background, initial training, continuous training attended & to be attended, job description, acting person if absent
- 15. Working hours & workload
- 16. Daily organization procedure
- 17. Night shift & weekend shift procedures
- 18. Communication procedures between staff (notes, regular meetings ...)

Sample procedures

- 19. Sampling rooms
- 20. Sampling material
- 21. Sample rejection or acceptation criteria
- 22. Blood sampling (peripheral & capillary)
- 23. Stool sampling
- 24. Urine sampling
- 25. Vaginal sampling
- 26. Urethral sampling
- 27. STD sampling
- 28. Sputum sampling
- 29. Induced expectoration sampling
- 30. Wound sampling
- 31. Ear sampling
- 32. Nose sampling
- 33. Throat sampling
- 34. Dropsy overflow sampling
- 35. Pleural overflow sampling
- 36. CSF sampling
- 37. Ganglion sampling
- 38. Mycological sampling
- 39. Medullar sampling

Sample transportation procedures

- 40. Transport media general procedure
- 41. International transportation rules (IATA/other)
- 42. Sending specimen procedure
- 43. Receiving specimen procedure

- 44. Cary-Blair media
- 45. Alcalin pepton water media
- 46. TransIsolate media
- 47. Portagerm media
- 48. Other transport media
- 49. Particular cases: HIV, hepatitis, poliomyelitis, haemorrhagic fever

Sterilization, hygiene & security procedures

- 50. Sterilization by the dry heat
- 51. Sterilization by the wet heat
- 52. Chemical cold sterilization
- 53. Disinfectants, disinfections
- 54. Vaccination required for laboratory staff
- 55. Clothes required in the laboratory
- 56. Lab-coat, napkins & tissues washing
- 57. Hand washing
- 58. Laboratory washing, including floor & benches
- 59. Safe manipulation procedure
- 60. Procedures in case of injury (chemical, wound, burning)
- 61. Procedure in case of biohazard injury (incl. HIV+ exposure)

Staining procedures

- 62. Smears, films & slides performing
- 63. Quality control of staining methods
- 64. Methylene blue staining
- 65. Gram staining
- 66. Ziehl Nielsen staining
- 67. India ink staining
- 68. Giemsa staining
- 69. May Grünewald Giemsa / field staining
- 70. Lugol staining
- 71. Trichrome staining
- 72. Lactophenol blue staining

- 73. Weber staining
- 74. Gomori Grocott staining

Media procedures

- 75. Media ordering procedures
- 76. Media location in the laboratory
- 77. General procedure on media preparation
- 78. General procedure on media conservation
- 79. Culture media decontamination & elimination
- 80. Incorporation of ATB into Used culture media
- 81. Conservation and control of culture media
- 82. Non selective agar
- 83. Hektoen culture media
- 84. Salmonella Shigella culture media
- 85. BCYE culture media
- 86. Blood agar culture media
- 87. Chocolate culture media
- 88. Mc Conkey culture media
- 89. Sabouraud culture media
- 90. TCBS culture media
- 91. Chapman culture media
- 92. Kliegler culture media
- 93. Simmons citrate culture media
- 94. Löwenstein Jensen culture media
- 95. Coletsos culture media
- 96. Basic nutritive broth
- 97. Brain heart broth
- 98. Schaedler broth

Reagent procedures

- 99. Reagent ordering procedures
- 100. Reagent stock management
- 101. Reagent global use, quality control and storage
- 102. Reagent location in the laboratory

103. Reagent fabrication

Sample culture procedures

- 104. Stool culture
- 105. Urine culture
- 106. CSF culture
- 107. Blood culture
- 108. Swab specimen culture
- 109. Sputum culture (general)
- 110. Sputum culture (tuberculosis research)
- 111. Overflows culture
- 112. Culture for mycological research

Identification of a micro-organism

- 113. Identification of a gram positive cocci
- 114. Identification of a gram positive rods
- 115. Identification of a gram negative cocci
- 116. Identification of a gram negative rods
- 117. STDs diagnostics & culture

Antibiotic susc. testing procedures

- 118. Media preparation, control & use
- 119. AST general procedure
- 120. AST special feature procedure
- 121. MIC procedure

Quality assurance procedures

General QA procedures

- 122. Location of QA manual and documentation
- 123. Update of QA manual
- 124. Procedure flow inside the laboratory Equipment procedures
- 125. General acquisition procedure
- 126. General resp. & organization toward equipment
- 127. Centrifuge use, control & maintain
- 128. Microscope use, control & maintain

- 129. Incubator use, control & maintain
- 130. Laminar flow use, control & maintain
- 131. Water bath use, control & maintain
- 132. Agitators use, control & maintain
- 133. Fridge use, control & maintain
- 134. Freezer use, control & maintain
- 135. Scale use, control & maintain
- 136. ELISA chain use, control & maintain
- 137. Colorimeter use, control & maintain
- 138. Spectrophotometer use, control & maintain
- 139. Turbidimeter use, control & maintain
- 140. Autoclave use, control & maintain
- 141. Oven use, control & maintain
- 142. Dryer use, control & maintain
- 143. Washing machine use, control & maintain
- 144. Water distiller use, control & maintain Internal quality control procedures
- 145. What IQC is to be performed
- 146. Archiving IQC results
- 147. Corrective action to be taken following bad IQC results

External quality control procedures

- 148. What EQC is to be performed
- 149. Archiving EQC results
- 150. Corrective actions to be taken following a bad EQC result

Data management procedures

Recording & computerized procedures

- 151. Legal frame on what should be recorded for each patient
- 152. Global recording procedures
- 153. Availability of the manual of the computerized laboratory management software (CLMS)
- 154. Pre-analytical edition: working number,

labels, working sheets

- 155. Results filling & technical validation procedures
- 156. Criteria for re-analyzing an abnormal result
- 157. Access restriction for patient modification, result modification, biological validation Archiving procedures
- 158. Global organization of archiving: what, where, how
- 159. Archives access restriction
- 160. Backup & copies of archived data
- 161. How long to archive data, logbooks and reports

Reporting procedures

Disease-specific procedures

For each disease

- 162. (some parts are not relevant for all the disease)
- 163. Causative organism
- 164. Specimen used
- 165. Collection, storage and transport. of specimens
- 166. Material needed
- 167. List of analysis to be performed, useless analysis
- 168. Macroscopic examination of the specimens
- 169. Staining procedures, microscopic examination
- 170. Analysis procedures
- 171. Serodiagnostic and other immunological tests

- 172. Other significant organisms isolated from the same specimen
- 173. Differential diagnostic, false positives, false negatives
- 174. Quality control
- 175. Antimicrobial susceptibility testing
- 176. Presumptive identification
- 177. Further analysis to be sent out of the laboratory
- 178. Reporting of the results, units of the results
- 179. Referral, links with Public Health authorities
- 180. Biosafety, waste elimination

Proposed list of diseases

- 181. Cholera
- 182. Shigella
- 183. Salmonella
- 184. Diphtheria
- 185. Typhoid fever
- 186. Pyogenic meningitis
- 187. STDs
- 188. Plague
- 189. Tuberculosis
- 190. Other respiratory diseases
- 191. Malaria
- 192. Viral hemorrhagic fever
- 193. Hepatitis
- 194. HIV/AIDS
- 195. Fungal infections
- 196. Parasitic digestive infections

Annex G. Details on Costing Issues

Note: all tables and graphs (included as pictures) are also available in MS Excel® format.

Price of Equipment and Sampling Consumables

Figure E-1 shows the details about:

- Price of small equipment (included in the network budget)
- Price of sampling consumables (not included in the network budget as included in the hospital budget)

This sampling equipment represents quite a large amount of money, and is regularly a limiting factor of sampling quality and quantity. It has not been included into the yearly budget, as already supported by a large variety of programs and institutions.

	# per PHC	# of PHC	#per district	# of districts	# per region	#of regions	total units	unit price	tota	al price
triple package (large size)	4	488	8	61	16	11	2616	\$ 20	\$	52 320
external cold box	2	488	4	61	8	11	1308	\$ 4	\$	5 232
ice pack, average	8	488	16	61	32	11	5232	\$ 0,5	\$	2 6 1 6
sampling guideline	3	488	10	61	10	11	2184	\$ 2,0	\$	4 368
renewal of the set every 4 years> yearly cost Yearly \$ 16 13 Sampling consumables								16 134		
	# per PHC	# of PHC	#per district	# of districts	# per region	#of regions	total units	unit price	tota	al price
vaccutainer tubes ("dry")	1000	488	3000	61	6000	11	737000	0,2	\$ 1	47 400
vaccutainer tubes ("EDTA")	500	488	2000	61	4000	11	410000	0,2	\$	82 000
urine vial	2000	488	2000	61	4000	11	1142000	0,1	\$1	14 200
cary-blair (stool transportation)	300	488	1000	61	2000	11	229400	0,05	\$	11 470
swabs, set of 100	10	488	30	61	60	11	7370	7	\$	51 590
	20	488	40	61	80	11	13080	3	\$	39 240
slides, set of 50		488	1000	61	2000	11	180600	0,7	\$1	26 4 20
slides, set of 50 hemoculture bottles	200			04	100	11	13010	2	¢ .	27 820
slides, set of 50 hemoculture bottles request forms (set of 100)	200 20	488	50	61	100	1.1	10010	2	Ψ.	21 020

Figure G-1. Details on Sampling Equipment and Consumables Costing

Training issues					
Preparation of the train					
	uni	t cost	# units	tot	al cost
material developement	\$	3 000	1	\$	3 000
writing guideline	\$	2 000	1	\$	2 000
field test	\$	2 000	2	\$	4 000
definitive version	\$	2 000	1	\$	2 000
			total	\$	11 000
	~				
training of regional lab	3 p.	articipai	nts per regioi	ns	
	11 ге	egions			
	uni	t cost	#units	tot	al cost
perdiem participants	\$	50	33	\$	1650
set of material	\$	10	33	\$	330
			total	\$	1 980
the last and the table to be	~				
training of district labs	Z Pi	articipai	nts per distri	cts	
	610	listricts	щ .	l	
	uni	t cost	# units	tot	al cost
perdiem participants	\$	25	122	\$	3 050
set of material	\$	10	122	\$	1220
			total	\$	4 270
training of PHC	1.02	orticinar	ts per PHC	-	
duning of the	488 PHC				
	unit cost		# units	total cost	
perdiem participants	\$ 10		976	\$	9 760
set of material	\$	10	488	\$	4 880
			total	\$	14 640
arand total training					31 890
if every 2	yea	rs>)	/early cost	\$	15 945

Figure G-2. Training Costs	Figure	G-2.	Training	Costs
----------------------------	--------	------	----------	-------

Use of the Costing Tool for Laboratories

The Costing Tool for Laboratories (CTL) is a tool being developed by WHO/CSR/Lyon. It will help in the development of a global budget to support national public health laboratory systems in their basic laboratory surveillance activity.

This CTL is designed for various professionals including:

- Policymakers
- ▲ Health economists
- ▲ Administrators

- ▲ MoH representatives
- ▲ Laboratory coordinators
- Reference laboratory directors

The CTL can be used by the aforementioned professionals to:

- Calculate global costs for a laboratory network organization in their country
- ▲ Calculate costs for a specific disease syndrome
- ▲ Calculate costs for a specific type of laboratory
- Calculate costs for a specific type of analysis

In addition, this CTL can be used in the development of a national strategic plan that explores the following:

- ▲ How to screen/diagnose/confirm a specific disease
- A How to organize and manage a laboratory network in a country
- How to determine the type of analysis that should be available at each level of the laboratory network
- A How to determine the number of staff required at each laboratory level
- A How to determine the amount of equipment needed at each laboratory level

This tool can be used in two different ways:

- 1. The **rapid** method uses automated calculations with no or few refinements in the calculations.
- 2. The **precise** method refines several of the indicators used for calculations when completing the tool. This method is more accurate; however, it is also a more time-consuming process.

Important note: this tool is still under development and Georgia was one of the first countries for field-testing of the tool. We are only providing a screenshot of the result.

Figure G-3. Screenshot of the Preliminary Laboratory Network Costing Tool (WHO/CSR/Lyon)

Once this tool finalized, it will be possible to include all country parameters in order to get a very precise estimate.

Annex H: Documentation Provided/Gathered During Consultation

Documentation provided:

Note: a CD-ROM containing a large amount of documentation was burned and left with the director of the Licensing Unit.

- ▲ WHO/CDC Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World (English), 3 examples left (NCDC, Infectious Disease Hospital, Curatio International)
- Summary of the norm ISO 17025 (English), as the official document is not for free distribution
- Questionnaire for microbiology laboratory certification, French Committee for Antibiogramme (English & French)
- French Norms for Antibiogramme (English and French), free distribution
- Links to NCCLS (US standards), as distribution is not free
- ▲ Different types of Georgian maps (with regions and/or districts, with both, etc.), provided by the Health Mapping unit (WHO/Geneva)
- ▲ French "GBEA" (Guide de Bonne Execution des Analyses, Guide for good execution of analysis), sshort 25-page summary of French norms for laboratories
- Moldovan policy for "National External Quality Control Scheme in Bacteriology" (English)
- Policies and procedures of the WHO/NHLS external quality control for African laboratories of 43 countries (125 pages, in English)
- ▲ French nomenclature of analysis (free distribution)
- ▲ French official tests:
 - △ "Décret relative au contrôle de qualité des analyses de biologie médicale", décret 94-1049, 02/12/1994 (decree related to QC of analysis), decree that made compulsory participation to National EQC programme (in French)
 - △ "Missions et compétences de l'AFSSAPS", missions and objectives of the French FDA (in French)

Documentation gathered:

- "Organization of TB laboratory network and sputum transportation project in Georgia", with narrative, map, and laboratory list
- Presentation PowerPoint of the DTRA project/training week in Georgia
- "PHC Service Model for Kakheti region"

- World Bank Primary Health Care Development Project: "Project Appraisal Document" (94 pages)
- ▲ VPD Quality Assurance Manual (only in Georgian to-date)
- ▲ Georgian norms for laboratories (printed by NGO Genesis, only in Georgian to-date)
- ▲ Georgian railroad time table (useful for regular train transportation)

Note: an interactive CD-rom for network implementation is also available